EC 3352 – DIGITAL SYSTEM DESIGN

<u>UNIT – III : SYNCHRONOUS SEQUENTIAL CIRCUITS</u>

3.3 CLASSIFICATION OF SYNCHRONOUS SEQUENTIAL CIRCUIT MOORE AND MEALY MODEL

In synchronous or clocked sequential circuits, clocked Flip-Flops are used as memory elements, which change their individual states in synchronism with the periodic clock signal. Therefore, the change in states of Flip-Flop and change in state of the entire circuits occur at the transition of the clock signal.

The synchronous or clocked sequential networks are represented by two models.

Moore model: The output depends only on the present state of the Flip-Flops.

Mealy model: The output depends on both the present state of the Flip-Flops and on the inputs.

Moore model:

In the Moore model, the outputs are a function of the present state of the Flip- Flops only. The output depends only on present state of Flip-Flops, it appears only after the clock pulse is applied, i.e., it varies in synchronism with the clock input.

EC 3352 – DIGITAL SYSTEM DESIGN

Mealy model:

In the Mealy model, the outputs are functions of both the present state of the Flip-Flops and inputs.

Difference between Moore and Mealy model

SI.No	Moore model	Mealy model				
1	Its output is a function of present	Its output is a function of present				
	state only.	state as well as present input.				
2	Input changes does not affect the	Input changes may affect the output				
	output.	of the circuit.				
3	It requires more number of states	It requires less number of states for				
	for implementing same function.	implementing same function.				

ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUIT:

The behavior of a sequential circuit is determined from the inputs, outputs and the state of its Flip-Flops. The outputs and the next state are both a function of the inputs and the present state. The analysis of a sequential circuit consists of obtaining a table or diagram from the time sequence of inputs, outputs and internal states.

Before going to see the analysis and design examples, we first understand the state diagram, state table.

State Diagram

State diagram is a pictorial representation of a behavior of a sequential circuit.

- In the state diagram, a state is represented by a circ e and the transition between states is indicated by directed lines connecting the circles.
- A directed line connecting a circle with circle with itself indicates that next state is same as present state.
- The binary number inside each circle identifies the state represented by the circle.
- The directed lines are labeled with two binary numbers separated by a symbol '/'. The input value that causes the state transition is labeled first and the output value during the present state is labeled after the symbol '/'.

In case of Moore circuit, the directed lines are labeled with only one binary number representing the state of the input that causes the state transition. The output state is indicated within the circle, below the present state because output state depends only on present state and not on the input.

State diagram for Mealy circuit

State diagram for Moore circuit

State Table

State table represents relationship between input, output and Flip-Flop states.

It consists of three sections labeled present state, next state and output.

- The present state designates the state of Flip-Flops before the occurrence of a clock pulse, and the output section gives the values of the output variables during the present state.
- Both the next state and output sections have two columns representing two possible input conditions: X= 0 and X=1.

Present	Next	state	Output		
state	X= 0	X= 1	X= 0	X= 1	
AB	AB	AB	Y	Y	
а	а	С	0	0	

b	b	а	0	0
С	d	С	0	1
d	b	d	0	0

In case of Moore circuit, the output section has only one column since output does not depend on input.

resent state	Next	state	Output
	X= 0	X= 1	Y
AB	AB	AB	
a	а	С	0
b	(b)	a	0
С	d	с	1
d	b	d	0

State Equation

It is an algebraic expression that specifies the condition for a Flip-Flop state transition.

The Flip-Flops may be of any type and the logic diagram may or may not include combinational circuit gates.

ANALYSIS PROCEDURE

The synchronous sequential circuit analysis is summarizes as given below:

1. Assign a state variable to each Flip-Flop in the synchronous sequential circuit.

- Write the excitation input functions for each Flip-Flop and also write the Moore/ Mealy output equations.
- Substitute the excitation input functions into the bistable equations for the Flip-Flops to obtain the next state output equations.
- 4. Obtain the state table and reduced form of the state table.
- 5. Draw the state diagram by using the second form of the state table.

Analysis of Mealy Model

1.A sequential circuit has two JK Flip-Flops A and B, one input (x) and one output

BSERVE OPTIMIZE OUTSPREP

(y). the Flip-Flop input functions are,

J _A = B+ x O	J _B = A'+ x'
K _A = 1	K _B = 1

and the circuit output function, Y= xA'B.

a) Draw the logic diagram of the Mealy circuit,

West,

- b) Tabulate the state table,
- c) Draw the state diagram.

<u>Soln:</u>

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flops, use the JK Flip-Flop characteristics table.

Prese	Present Input			Flip-Flo	p Inputs		Next	state	Output
state									
Α	В	x	J _A = B+ x	K _A = 1	JB= A'+ x'	K _B = 1	A(t+1)	B(t+1)	Y= xA'B
0	0	0	0	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	0
0	1	0	OB ₁ SER	/E 1 .PT	IMIZE ON	17 1 PP	EAD 1	0	0
0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	1	1	0	1	0
1	0	1	1	1	0	1	0	0	0
1	1	0	1	1	1	1	0	0	0
1	1	1	1	1	0	1	0	0	0

- 2. A sequential circuit with two 'D' Flip-Flops A and B, one input (x) and one output
 - (y). the Flip-Flop input functions are:

D_A= Ax+ Bx

 $D_B = A'x$ and the circuit output function is,

Y= (A+ B) x'.

- (a) Draw the logic diagram of the circuit,
- (b) Tabulate the state table,
- (c) Draw the state diagram.

Prese	Present		Flip-Flop	Innuts	Next	state	Output	
state		Input		mputs	Text	State	output	
Α	В	х	D _A = Ax+Bx	DB= A'x	A(t+1)	B(t+1)	Y= (A+B)x'	
0	0	0	0	0	0	0	0	
0	0	1	0 - E	NGIN	- 6 C /	V 1	0	
0	1	0	0	0	0	04	1	
0	1	1	SI T	1	1	1	0	
1	0	0	0	0	0	0	m1	
1	0	10	1	0	1	0	0	
1	1	0	0	00	0	0	1	
1	1 1 1		1 0		1	0	0	
L		1	M/δ				8	

State Table:

			Nex	t state	Output		
Present		х	=0	x=	1	x= 0	x= 1
state							
Α	В	Α	В	Α	В	Y	Y
0	0	0	0	0	1	0	0
0	1	0	^{IVE} OO P	TIMIZE	OUISP	1	0
1	0	0	0	1	0	1_	0
1	1	0	0	1	1 0		0

Second form of state table

State Diagram:

3. Analyze the synchronous Mealy machine and obtain its state diagram.

Soln:

The given synchronous Mealy machine consists of two D Flip-Flops, one inputs and one output.

The Flip-Flop input functions are,

DA= Y1'Y2X'

 $D_{B} = X + Y_{1}'Y_{2}$

GINEERINGAN The circuit output function is, Z= Y₁Y₂X

State Table:

	Present Input state		Flip-Flo	p Inputs	Next	Output			
Y1	Y2	X	DA= Y1'Y2X'	D _B = X+ Y ₁ 'Y ₂	Y ₁ (t+1)	Y ₂ (t+1)	$\mathbf{Z}=\mathbf{Y}_{1}\mathbf{Y}_{2}\mathbf{X}$		
0	0	0	0	0	0	0	0		
0	0	1	0	1	0	10	0		
0	1	0		1	1	12/	0		
0	1	1	+ 0	1	0	* 1	0		
1	0	0	O ALKO	0	0	0	0		
1	0	1	0	LAM, KANYA 1	0	1	0		
1	1	0	0	0	0	0	0		
1	1	1	0 ^B SERVE	OPTUALZE O	UTSO ^{RE}	1	1		
L									

Present			Nex	Output			
state		X= 0		x = 1		X= 0	X= 1
Y1 Y2		Y1	Y2	Y1	Y2	Z	Z

0	0	0	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	0
1	1	0	0	0	1	0	1

Second form of state table

State Diagram:

output z. The Flip-Flop input equation and circuit output equations are

 $J_A = Bx + B' y' \qquad K_A = B' xy' J_B = A' x \qquad K_B = A + xy' , \qquad z = Ax' y' + Bx' y'$

(a) Draw the logic diagram of the circuit (b)

Tabulate the state table. (c) Derive the

state equation.

State diagram:

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flop, use the JK Flip-Flop characteristic table,

Pre	Present Inpu		out	Flip-Flop			Next	state	Output	
sta	ate									
Α	В	Х	У	J _A =	K _A =	J _B =	K _B =	A(t+1)	B(t+1)	Z
				Bx+B'y'	В'ху'	А'х	A+xy'			
0	0	0	0	1	0	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	1	1	1	1	1	0
0	0	1	1	0	0	1	0	0	1	0

0	1	0	0	0	0	0	0	0	0	1
0	1	0	1	0	0	0	0	0	0	0
0	1	1	0	1	0	1	1	1	1	0
0	1	1	1	1	0	1	0	1	1	0
1	0	0	0	1	0	0	1	1	0	1
1	0	0	1	0	ENOGI	0	RAVO	1	0	0
1	0	1	0	1	1	0	1	- 0	0	0
1	0	1	1	<u>ن</u> ٥	0	0	1	10	0	0
1	1	0	0	0	0	0	1	1	0	1
1	1	0	ð	0	0	0	1	1	0	0
1	1	1	0	1	0	0	1	1	0	0
1	1	1	1	1	0	0		1	0	0

State Equation:

5. A sequential circuit has two JK Flip-Flop A and B. the Flip-Flop input functions are: $J_A = B J_B = x'$

$$K_A = Bx'$$
 $K_B = A x.$

- (a) Draw the logic diagram of the circuit,
- (b) Tabulate the state table,
- (c) Draw the state diagram.

Logic diagram:

The output function is not given in the problem. The output of the Flip-Flops may be considered as the output of the circuit.

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flop, use the JK Flip-Flop characteristic table.

Prese state		Input		Flip-Flo	p Inputs		Next state	
Α	В	x	J _A = B	KA= Bx'	JB= x'		A(t+1)	B(t+1)
						K _B = A x		
0	0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0
0	1	0	1	1	1	0	1	1

Analysis of Moore Model

6. Analyze the synchronous Moore circuit and obtain its state diagram.

Soln:

Using the assigned variable Y_1 and Y_2 for the two JK Flip-Flops, we can write the four excitation input equations and the Moore output equation as follows:

State	tab	le:

Prese		Input	Flip-Flop Inputs				Next state		Output
state Y1	Y2	X	J _A = Y ₂ X	$K_A = Y_2'$	J _B = X	КВ= Х'	Y ₁ (t+1)	Y ₂	Z= Y ₁ Y ₂ '
							- 1 ()	(t+1)	
0	0	0	0	1	0	1	0	0	0
0	0	1	0	1	1	0	0	1	0

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

0	1	0	0	0	0	1	0	0	0
0	1	1	1	0	1	0	1	1	0
1	0	0	0	1	0	1	0	0	1
1	0	1	0	1	1	0	0	1	1
1	1	0	0	0	0	1	1	0	0
1	1	1	1	EPIG	NEE	RON	1	1	0

State Diagram:

Second form of state table

Here the output depends on the present state only and is independent of the input. The two values inside each circle separated by a slash are for the present state and output.

7. A sequential circuit has two T Flip-Flop A and B. The Flip-Flop input functions are:

y= AB

(a) Draw the logic diagram of the circuit

 $T_B = x$

- (b) Tabulate the state table,
- (c) Draw the state diagram.

Soln:

Logic diagram:

Prese	ent	Input	Fli	ip-Flop l	nputs		Next	state		Output	
state											
Α	В	x	T _A = Bx T _B = x			A	(t+1)	B (t-	+1)	y= AB	
0	0	0	0	EN	GINDE	ERI	0	0		0	
0	0	1	0		1		0	1		0	
0	1	0	്ഗ്		0		0	1		0	
0	1	1	1		1	1	1	0	1	0	
1	0	0	0	R	0	19	1	0	2	0	
1	0	1)	0		010	0	1	1	Z	0	
1	1	0	0		0		1	1	2	1	
1	1	1	1		1	R	0	0	8	1	
L				Nex	xt state			Out	out		
	Pres	ent	x	=0	X	= 1	X=	= 0	x= 1	L	
	stat	е									
	Α	В	Α	В	Α	В		y	У		
	0	0	0	0	0	1		0	0		
	0	1	0	^{RV} 1 0	PT 1 Z	E 0'0'T	SPRE	0	0		
	1	0	1	0	1	1		0	0		
	1	1	1	1	0	0		1	1	1999 B	
	L	1	, 	econd f	orm of st	ato tab	ما]	

State table

Second form of state table

State Diagram:

STATE REDUCTION/ MINIMIZATION

The state reduction is used to avoid the redundant states in the sequential circuits. The reduction in redundant states reduces the number of required Flip-Flops and logic gates, reducing the cost of the final circuit.

The two states are said to be redundant or equivalent, if every possible set of inputs generate exactly same output and same next state. When two states are equivalent, one of them can be removed without altering the input-output relationship.

Since 'n' Flip-Flops produced 2ⁿ state, a reduction in the number of states may result in a reduction in the number of Flip-Flops.

The need for state reduction or state minimization is explained with one example.

State diagram

Step 1: Determine the state table for given state diagram

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1
a	b	С	0	0
b	d	e	1	0
C	С	d	0	1
d 🛧	а	d	0	0
e A	С	d	0	1
	St	tate tabl	e	

Step 2: Find equivalent states

PTIMIZE OUTSPE From the above state table c and e generate exactly same next state and same output for every possible set of inputs. The state c and e go to next states c and **d** and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state **e** can be removed and replaced by **c**. The final reduced state table is shown below.

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1

а	b	С	0	0
b	d	С	1	0
С	С	d	0	1
d	а	d	0	0

Reduced state table

The state diagram for the reduced table consists of only four states and is shown below.

1. Reduce the number of states in the following state table and tabulate the reduced state table.

	Present	Next	state	Out	put	
	state	X= 0	X= 1	X= 0	X= 1	
4	a	а	b	0	0	2
	b	С	d	0	0	1
	С	а	d	0	0	
	d	е	f	0	1	
	е	а	f	0	1	

f	g	f	0	1
g	а	f	0	1

<u>Soln</u>:

From the above state table **e** and **g** generate exactly same next state and same output for every possible set of inputs. The state **e** and **g** go to next states **a** and **f** and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state **g** can be removed and replaced by **e**.

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1
а	а	b	0	0
b	С	d	0	0
de	a	d	0	0
d	е	f	0	1
е	k a	f	0	1
f	е	f	0	1

The reduced state table-1 is shown below.

Reduced state table-1

Now states d and f are equivalent. Both states go to the same next state (e, f) and have same output (0, 1). Therefore one state can be removed; **f** is replaced by **d**.

The final reduced state table-2 is shown below.

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1
а	а	b	0	0
b	С	d	0	0
С	а	d	0	0
d	Eleo	d	ROV	1
e O	а	d	0	1
5///	Reduce	d state	table-	

<u>**2**</u>Thus 7 states are reduced into 5 states.

2. Determine a minimal state table equivalent furnished below

handline of the	1 3 Million 4.		
ပျ	Present	Next	state
3	state	X= 0	X= 1
E	1	1, 0	1, 0
1 de	2	1, 1	6, 1
	* 3	4, 0	5,0
	4 YULAN	1, 1	7,0
	5	2, 0	3, 0
-	OBSERVE	4, 0	5, 0
L	7 0 0 0	2, 0	3, 0
and the second se			

<u>Soln</u>:

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1
1	1	1	0	0
2	1	6	1	1

3	4	5	0	0
4	1	7	1	0
5	2	3	0	0
6	4	5	0	0
7	2	3	0	0

From the above state table, **5** and **7** generate exactly same next state and same output for every possible set of inputs. The state **5** and **7** go to next states **2** and **3** and have outputs 0 and 0 for x=0 and x=1 respectively. Therefore state **7** can be removed and replaced by **5**.

Similarly, **3** and **6** generate exactly same next state and same output for every possible set of inputs. The state **3** and **6** go to next states **4** and **5** and have outputs 0 and 0 for x=0 and x=1 respectively. Therefore state **6** can be removed and replaced by **3**.

Present	Next state		Out	put
state	X= 0	X= 1	X= 0	X= 1
1	1	1	0	0
2	VE 197	3	001581	1
3	4	5	0	0
4	1	5	1	0
5	2	3	0	0

The final reduced state table is shown below.

Reduced state table Thus

- 7 states are reduced into 5 states.
- 3. Minimize the following state table.

HNOLO

Present	Next	state
state	X= 0	X= 1
А	D, 0	C, 1
В	E, 1	A, 1
OF CENC	H, 1	D, 1
D	D, 0	C, 1
	В, О	G, 1
150	H, 1	D, 1
G	A, 0	F, 1
H N	C, 0	A, 1
	G, 1	H,1

<u>Soln</u>:

Present	ent Next stat		Out	put
state	X= 0	X= 1	X= 0	X= 1
А	D	C	0	1
B	VE EPT	MATE	00150	1
С	Н	D	1	1
D	D	C	0	1
E	В	G	0	1
F	Н	D	1	1
G	Α	F	0	1

Н	С	А	0	1
Ι	G	Н	1	1

From the above state table, **A** and **D** generate exactly same next state and same output for every possible set of inputs. The state **A** and **D** go to next states **D** and **C** and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state **D** can be removed and replaced by **A**. Similarly, **C** and **F** generate exactly same next state and same output for every possible set of inputs. The state **C** and **F** go to next states **H** and **D** and have outputs 1 and 1 for x=0 and x=1 respectively. Therefore state **F** can be removed and replaced by **C**.

Present	Next	Next state		Output		
state	X= 0	X= 1	X= 0	X= 1		
А	А	С	0	1		
B	E	A	1	1		
С	* UHAM	KANN	AK1	1		
E	В	G	0	1		
G	А	С	0	1		
T	С	А	0	1		
1	G	Н	1	1		

The reduced state table-1 is shown below.

Reduced state table-1

From the above reduced state table-1, **A** and **G** generate exactly same next state and same output for every possible set of inputs. The state **A** and **G** go to next states **A** and **C** and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1
А	A	С	0	1
В	ELEC	А	~4V	1
¢	н	А	1	1
14ª///	В	Α	0	1
2 H	50	Α	0	1
2/1	Α	<u>ко Н</u> – 2	1	1

state **G** can be removed and replaced by **A**. The final reduced state table-2 is shown below.

<u>2</u>Thus 9 states are reduced into 6 states.

4. Reduce the following state diagram.

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1
а	а	b	0	0
b	С	d	0	0
С	Ela	d	Rov	0
d O	е	f	0	<1
е	а	f	0	1
$\overline{\mathcal{A}}$	g	, f	0	1
g	а	f	0	1
	and in the	0.0.2	14	1 1

<u>Soln:</u>

State table

From the above state table **e** and **g** generate exactly same next state and same output for every possible set of inputs. The state **e** and **g** go to next states **a** and **f** and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state **g** can be removed and replaced by **e**. The reduced state table-1 is shown below.

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1
а	а	b	0	0
b	VE OPT	IM I d TE I	0U 0 5P1	0
C	а	d	0	0
d	е	f	0	1
е	а	f	0	1
f	е	f	0	1

Reduced state table-1

Now states d and f are equivalent. Both states go to the same next state (e, f) and have same output (0, 1). Therefore one state can be removed; **f** is replaced by **d**.

Present Next state Output state X= 0 X= 1 X= 0 X= 1 0 а b 0 а b С d 0 0 0 С d 0 а 0 d d 1 е d 0 1 е а **Reduced state table-2**

The final reduced state table-2 is shown below.

Thus 7 states are reduced into 5 states.

The state diagram for the reduced state table-2 is,

DESIGN OF SYNCHRONOUS SEQUENTIAL CIRCUITS:

A synchronous sequential circuit is made up of number of Flip-Flops and combinational gates. The design of circuit consists of choosing the Flip-Flops and then finding a combinational gate structure together with the Flip-Flops. The number of Flip-Flops is determined from the number of states needed in the circuit. The combinational circuit is derived from the state table.

Design procedure:

- 1. The given problem is determined with a state diagram.
- 2. From the state diagram, obtain the state table.
- The number of states may be reduced by state reduction methods (if applicable).
- 4. Assign binary values to each state (Binary Assignment) if the state table contains letter symbols.
- 5. Determine the number of Flip-Flops and assign a letter symbol (A, B, C,...) to each.
- 6. Choose the type of Flip-Flop (SR, JK, D, T) to be used.
- 7. From the state table, circuit excitation and output tables.
- 8. Using K-map or any other simplification method, derive the circuit output functions and the Flip-Flop input functions.
- 9. Draw the logic diagram.

The type of Flip-Flop to be used may be included in the design specifications or may depend what is available to the designer. Many digital systems are constructed with JK Flip-Flops because they are the most versatile available. The selection of inputs is given as follows.

Flip-Flop	Application	
JK O	General Applications	
. Ď //	Applications requiring transfer of	
5/8	data	
s/r	(Ex: Shift Registers)	
3	Application involving	
ā	complementation	
E	(Ex: Binary Counters)	

Excitation Tables:

Before going to the design examples for the clocked synchronous sequential circuits we revise Flip-Flop excitation tables.

	Present State	Next State	Inp	uts	A
T^{o_B}	Qn	Qn+1	S	R	74
5	0	0	0	х	\sim
	0	1	1	0	
	1	0	0	1	
	1	1	х	0	
	Excitation	n table for		n_Elo	'n

Excitation table for SR Flip-Flop

Present State	Next State	Inp	uts
Qn	Qn+1	J	К
0	0	0	х
ON	SINEE	1	x
1	0	x	1
/1	1	х	0

Excitation table for JK Flip-Flop

Present	Next	Input	
State	State		
Qn	Qn+1	Т	
0	0	0	
0	1	1	
1	0	1	
KULAN	1	0	

Excitation table for T Flip-Flop

	Present	Next		
OBSE	State	State	Input	READ
5	Qn	Qn+1	D	
	0	0	0	
	0	1	1	
	1	0	0	
	1	1	1	
1	Excitation	table fo	r D Flip-	Flop

1.A sequential circuit has one input and one output. The state diagram is shown below. Design the sequential circuit with a) D-Flip-Flops, b) T Flip-Flops, c) RS Flip-Flops and d) JK Flip-Flops.

Solution:

State Table:

The state table for the state diagram is,

Present		Next state		Output		
state		X= 0	X= 1	X= 0	X= 1	
А	В	AB	AB	Y	Y	
0	0	00	10	0	1	
0	>1	11	00	0	0	
1	0	10	01	1	0	
1	1	00	10	1	0	

State reduction:

As seen from the state table there is no equivalent states. Therefore, no reduction in the state diagram.

The state table shows that circuit goes through four states, therefore we require 2 Flip-Flops (number of states= 2^m, where m= number of Flip-Flops). Since two Flip-Flops are required first is denoted as A and second is denoted as B.

i) <u>Design using D Flip-Flops</u>:

Excitation table:

Using the excitation table for T Flip-Flop, we can determine the excitation table for the

given circuit as,

tate	State	
Qn	Qn+1	D
0	0	0
0ªLkur	1	CUNIN R
1	0	0
1	1	1
1 1	Ū	0

Preser	nt	Input	Next	state	Flip-	Flop	Output
state					Inp	uts	
Α	В	Х	Α	В	DA	DB	Y
0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1
0	1	0	NGI	NELE!	2//1	1	0
0	1	D	0	0	0	0	0
1	0	S 0	1	0	1	0	1
1	0	1	0	1	0	\mathbb{Z}_1	0
1	18	0	0	0	0	0	1
1	10	1	10	000	1	0	0

Circuit excitation table

K-map Simplification:

With these Flip-Flop input functions and circuit output function we can draw the logic diagram as follows.

Logic diagram of given sequential circuit using D Flip-Flop

ii) Design using T Flip-Flops:

Using the excitation table for T Flip-Flop, we can determine the excitation table for the given circuit as,

	Present	Next	Input	- Q
	State	State		\supset
0	Qn	Qn+1	Т	-
	0	0	0	
	0	1	1	
	1	0	1	
	1	1	0	

Preser	nt	Input	Next	state	Flip-	Flop	Output
state					Inp	uts	
Α	В	X	Α	В	ТА	ТВ	Y
0	0	0	0	0	0	0	0
0	0	1 5	1	0	1	0	1
0	1	0	1	1	1	< 0	0
0	1	S 1	0	0	0	1	0
1	0	0	1	0	0	0	1
1	0	1	0	1	1	1	0
1	10	0	0	000	1	1	2 1
1	1	1	1	0	0	1	0

Excitation table for T Flip-Flop

Circuit excitation table

K-map Simplification:

		For F1	ip-flo	р <u>А</u>			or Fla	ip-flop	B			For	Outp	ut
ABX	00	01	11	10	ABX	00	01	11	10	ABX	00	01	11	10
0	0		0	$\left \begin{array}{c} 1 \end{array} \right $	0	0	0		0	0	0		0	0
1	0	1	0	1	1	0	1	1	1	1	1	0	0	(1
-	Γ _A = E	B⊕x			1	Г _в = А	AB+ A	X+ BX			Y = A	.'B'X+	AX'	1

Therefore, input functions for,

 $T_A = B x and$

$T_B = AB + AX + BX$

Circuit output function, **Y** = **XA'B'**+ **X'A**

With these Flip-Flop input functions and circuit output function we can draw the logic diagram as follows.

Logic diagram of given sequential circuit using T Flip-Flop

iii)Design using SR Flip-Flops:

Using the excitation table for RS Flip-Flop, we can determine the excitation

table for the given circuit as,

	Present	Next	Inp	uts	
	State	State			\geq
0	Qn	Qn+1	S	R	
	0	0	0	х	
	0	1	1	0	
	1	0	0	1	
	1	1	х	0	

	sent ate	Input	Next	state			Output		
Α	В	X	Α	В	SA	RA	SB	RB	Y
0	0	0	0	0	0	х	0	х	0
0	0	1	1	0	1	0	0	х	1
0	1	0	1	1	1	0	x	0	0
0	1	1 0	0	0	0	х	0	1	0
1	0	0	1	0	х	0	0	x	1
1	0	d'	0	1	0	1	1	0	0
1	1	0	0	0	0	1	0	12	1
1	1	21	1	0	х	0	0	12	0

Excitation table for SR Flip-Flop

Circuit excitation table

K-map Simplification:

For Flip-flop A

BV		For	r S _A		DV		Fo	rRA		DV		For	Outp	<u>ut</u>
ABX	00	01	11	10	ABX	00	01	11	10	ABX	00	01	11	10
0	0		0		0	x	0	x	0	0	0		0	0
1	x	0	x	0	1	0	1	0		1	1)	0	0	1
1		A'B'X+		X'	I	R _A = A	ABX'+	AB'X	C'	19	Y = A	'B'X+	AX'	1

For Flip-flop B

With these Flip-Flop input functions and circuit output function we can draw the logic diagram as follows.

iii) Design using JK Flip-Flops:

Using the excitation table for JK Flip-Flop, we can determine the excitation table for the given circuit as,

Present	Next	Inp	outs
State	State		
Qn	Qn+1	J	К
0	0	0	х
0	1	1	х
1 EN	GINEE	x	1
1	1	х	0<
Excitati	ion table for	JK Flip	-Flop

sta	sent Ite	Input	Next	state			Output		
Α	В	X	Α	A B		JA KA JB		КВ	Y
0	0	0	0	0	0	х	0	x	0
0	0	1	1	0	1	x	0	x	1
0	1	0	1	1	1	x	x	0	0
0	1	1	0	0	0	x	×	1	0
1	0	0	1	0	x	0	0	х	1
1	0	1	0	OPTIA	x	1	1	×	0
1	1	0	0	0	x	1	×	1	1
1	1	1	1	0	х	0	x	1	0

<u>Circuit excitation table</u>

K-map Simplification:

With these Flip-Flop input functions and circuit output function we can draw the logic diagram as follows.

 Design a clocked sequential machine using JK Flip-Flops for the state diagram shown in the figure. Use state reduction if possible. Make proper state assignment.

<u>Soln</u>:

State Table:

	Present	Next	state	Out	put	
Ż	state	X= 0	X= 1	X= 0	X= 1	31
Ŵ	а	а	b	0	0	100
	b	С	b	0	0	
	С	а	b	0	1	
	d	а	b	0	0	

From the above state table **a** and **d** generate exactly same next state and same output for every possible set of inputs. The state **a** and **d** go to next states **a** and **b** and have outputs 0 and 0 for x=0 and x=1 respectively. Therefore state **d** can be removed and replaced by **a**. The final reduced state table is shown below.

Present	Next	state	Out	put
state	X= 0	X= 1	X= 0	X= 1
a	а	b	0	0
b	с	b	0	0
С	а	b	0	1

Binary Assignment:

Now each state is assigned with binary values. Since there are three states, number of Flip-Flops required is two and 2 binary numbers are assigned to the states.

a= 00; b= 0; and c= 10

The reduced state diagram is drawn as,

Reduced State Diagram

Excitation Table:

Present	Next	Inp	Inputs		
State	State				
Qn	Qn+1	Ј К			
0	0	0	х		
0 E	GINE	$R_{1/}$	x		
0	0	x	1		
S1/=	1	x	0		
Excitat	ion table for	JK Flip-	Flop		

Flip-Flop Input Present Output Next state nputs state Х Α В Α В JA KA JB KB Υ 0 0 0 0 0 0 0 х х 0 1 0 1 1 0 0 0 0 Х х 0 0 0 0 1 1 1 1 Х Х 1 0 1 0 0 1 0 х 0 Х 0 1 0 0 1 0 0 0 х Х 1 1 1 0 0 1 1 1 х Х 0 1 1 Х Х Х Х Х Х Х 1 1 1 Х х х Х Х Х Х

K-map Simplification:

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

3. Design a clocked sequential machine using T Flip-Flops for the following state diagram. Use state reduction if possible. Also use straight binary state assignment.

Even though a and c are having same next states for input X=0 and X=1, as the outputs are not same state reduction is not possible.

State Assignment:

Use straight binary assignments as a=00, b=01, c=10 and d=11, the transition table is,

	Input	Prese	nt	Next	state	Flip-	Flop	Output	
		state				Inp	uts		
	Х	Α	В	Α	В	ТА	ТВ	Y	
	0	0	0	0	0	0	0 6	0	
	0	0	1	1	1	1	0	0	
	0	1	0	0	0	1	0	2	
	0	1	1	0	01	1	0	1	
	1	0	0	0	1	0	1	0	
	1	0	1	1	0	1	1	00/	
	1	1	0	0	1	1	1 -	0	
	1	1	*1	0	0	1	1*	1	
K-map sir	map simplification:								

For Flip-flop A For Flip-flop B For Output X^{AB} AB AB x (1 $T_A = A + B$ Z = AB + X'A $T_B = X$

Logic Diagram:

STATE ASSIGNMENT:

In sequential circuits, the behavior of the circuit is defined in terms of its inputs, present states, next states and outputs. To generate desired next state at particular present state and inputs, it is necessary to have specific Flip-Flop inputs. These Flip-Flop inputs are described by a set of Boolean functions called Flip-Flop input functions.

To determine the Flip-Flop functions, it is necessary to represent states in the state diagram using binary values instead of alphabets. This procedure is known as *state assignment*.

Rules for state assignments

There are two basic rules for making state assignments.

Rule 1:

States having the same NEXT STATES for a given input condition should

have assignments which can be grouped into logically adjacent cells in a K-map.

Rule 2:

States that are the NEXT STATES of a single state should have assignment which can be grouped into logically adjacent cells in a K-map.

SERVE OPPOUNDE OUTSPRI

j	Present	Next state		Out	2			
1	state	X= 0	X= 1	X= 0	X= 1	100		
	00	01	10	0	0			
	01	11	10	1	0			
	10	10	11	0	1			

EC 3352 - DIGITAL SYSTEM DESIGN

11	00	11	0	0			
State table with assignment states							

State Assignment Problem:

 Design a sequential circuit for a state diagram shown below. Use state assignment rules for assigning states and compare the required combinational circuit with random state assignment.

Using random state assignment we assign, a=

000, b= 001, c= 010, d= 011 and e= 100.

The excitation table with these assignments is given as,

		And in case of the local division of the loc	A and an a second second	distant descent of the	1991	and the second se	
Present te			Input		Output		
sta					state		
An	Bn	Cn	Х	An+1	Bn+1	Cn+1	Z
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0

SERVE OPTIMIZE OUTSPREA

K-map Simplification:

PALKULAM, KANYAKUN A_nB_n^{C_nX} Х х Х Х X х $\overline{\mathbf{D}_{A}} = \mathbf{B}_{n}\overline{\mathbf{C}}_{n}\overline{\mathbf{X}} + \overline{\mathbf{B}}_{n}\mathbf{C}_{n}\mathbf{X}$

A_nB_nC_nX Х Х Х Х Х Х $D_B = \overline{A}_n \overline{C}_n X + \overline{B}_n C_n \overline{X}$

EC 3352 - DIGITAL SYSTEM DESIGN

Now, we will apply the state assignment rules and compare the results.

State diagram after applying Rules 1 and 2

Rule 1 says that: e and d must be adjacent, and b and c must be adjacent.

Rule 2 says that: e and d must be adjacent, and b and c must be adjacent.

Present state			Input		Output			
An	Bn	Cn	Х	An+1	Bn+1	Cn+1	Z	
0	0	0	0	0	0	1	0	
0	0	0	1	0	1	1	0	
0	0	1	ONG	SINE	RON	1	0	
0	0	1 0	1	1	1	a 1	0	
0	1	0	0	х	x	x	x	
0	1	50/	1	x	x	x	x	
0	1	1	0	1	1	1	о	
0	1	1	1	à 1à	0	1	0	
1	0	0	0	×	x	х	≥ ×	
1	0	C 0	1	x	x	x	x	
1	0	21	0	0	0	0-2	0	
1	0	1 +	1	0	0	0	1	
1	1	0	0	x	X	x	x	
1	1 -	0	1	M, KAN X	x	x	×	
1	1	1	0	0	0	0	1	
1	1	1 ⁰ BS	ER\1E O	TIMUZE	OU OSPF	EAD	0	
K-map Simplification:								
		1				1 mar 1		

Applying Rule 1, Rule 2 to the state diagram we get the state assignment as,

The state assignments using Rule 1 and 2 require:

- 1 two input AND function MIZE OUTSPRE
- 2 two input OR functions
- 7 gates with 18 inputs

Thus by simply applying Rules 1 and 2 good results have been achieved.
