
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 INTRODUCTION TO SORTING

 Sorting is the process of arranging the elements of an array so that they can be

placed either in ascending or descending order.

 Efficient sorting is important to optimizing the use of other algorithms that

require sorted lists to work correctly and for producing human – read able input

For example,

CS3353 C PROGRAMMING AND DATA STRUCTURES

There are many techniques by using which, sorting can be performed

Sl. No.
Sorting

Algorithms
Description

1

Insertion Sort

Insertion sort inserts each element of the array to its

proper place. It is a very simple sort method which is used

to arrange the deck of cards while playing bridge

2

Quick Sort

Quick sort follows the divide and conquer approach in

which the algorithm is breaking down into sub problems,

then solving the sub problems, and combining the results

back together to solve the original problem.

3

Heap Sort

In the heap sort, Min heap or max heap is maintained

from the array elements depending upon the choice and

the elements are sorted by deleting the root element of the

heap.

4

Merge Sort

Merge sort follows divide and conquer approach in

which, the list is first divided into the sets of equal

elements and then each half of the list is sorted by using

merge sort. The sorted list is combined again to form an

elementary sorted array

 INSERTION SORT

 Insertion sort is a simple sorting algorithm.

 This sorting method sorts the array by shifting elements one by one.

 It builds the final sorted array one item at a time.

 Insertion sort has one of the simplest implementation.

 This sort is efficient for smaller data sets but it is insufficient for larger lists.

 It has less space complexity like bubble sort.

 It requires single additional memory space.

 Insertion sort does not change the relative order of elements with equal keys

because it is stable.

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Algorithm:

Step 1 − If the element is the first one, it is already sorted.

Step 2 – Move to next element

Step 3 − Compare the current element with all elements in the sorted array

Step 4 – If the element in the sorted array is smaller than the current element, iterate to

the next element. Otherwise, shift all the greater element in the array by one

position towards right

Step 5 − Insert the value at the correct position

Step 6 − Repeat until the complete list is sorted

 Working of Insertion sort Algorithm

Consider an unsorted array of elements 40, 10, 9, 20, 30, 50

 The above steps represents how insertion sort works. Insertion sort works like the

way we sort playing cards in our hands. It always starts with the second element

as key. The key is compared with the elements ahead of it and is put it in the right

place.

CS3353 C PROGRAMMING AND DATA STRUCTURES

 At the first step, 40 has nothing before it. Element 10 is compared to 40 and is

inserted before 40. Element 9 is smaller than 40 and 10, so it is inserted before 10

and this operation continues until the array is sorted in ascending order.

 Analysis of Insertion Sort:

Time Complexity

Best O(n)

Worst O(n2)

Average O(n2)

Space Complexity O(1)

Stability Yes

 Applications

 The insertion sort is used when:

 The array is has a small number of elements

 There are only a few elements left to be sorted

Example Program 5.1

#include <stdio.h>

int main()

{

int n, array[1000], c, d, t;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++)

{ scanf("%d", &array[c]);

}

for (c = 1 ; c <= n - 1; c++)

{ d = c;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

while (d > 0 && array[d] < array[d-1])

{

t = array[d];

array[d] = array[d-1];

array[d-1] = t;

d--;

}

}

printf("Sorted list in ascending order:\n");

for (c = 0; c <= n - 1; c++)

{

printf("%d\n", array[c]);

} return 0;

}

Output

Enter the number of elements

5

Enter 5 integers

40

30

20

10

40

Sorted list in ascending order

10

20

30

40

40

	INTRODUCTION TO SORTING
	INSERTION SORT
	Algorithm:
	Analysis of Insertion Sort:
	Example Program 5.1
	Output

