Rohini College of Engineering & Technology
Unit 5 Topological Sorting

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such
that for every directed edge u-v, vertex u comes before v in the ordering.
Note: Topological Sorting for a graph is not possible if the graph is not a DAG.

Example:

Input: Graph :

Output: 542310

Explanation: The first vertex in topological sorting is always a vertex with an in-degree of 0
(a vertex with no incoming edges). A topological sorting of the following graphis “54231
0”. There can be more than one topological sorting for a graph. Another topological sorting of
the following graphis “452310".

Topological Sorting vs Depth First Traversal (DFS):

In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In topological
sorting, we need to print a vertex before its adjacent vertices.

For example, In the above given graph, the vertex ‘5’ should be printed before vertex ‘0°, but
unlike DFS, the vertex ‘4’ should also be printed before vertex ‘0’. So Topological sorting is
different from DFS. For example, a DFS of the shown graph is “52 31 04”, butitis nota
topological sorting.

AD3251 Data Structure Design

Rohini College of Engineering & Technology

Topological order may not be Unique:

Topological sorting is a dependency problem in which completion of one task depends upon
the completion of several other tasks whose order can vary

Algorithm for Topological Sorting using DFS:

Here’s a step-by-step algorithm for topological sorting using Depth First Search (DFS):

Create a graph with n vertices and m-directed edges.

« Initialize a stack and a visited array of size n.

e For each unvisited vertex in the graph, do the following:
o Call the DFS function with the vertex as the parameter.
o Inthe DFS function, mark the vertex as visited and recursively call the DFS

function for all unvisited neighbors of the vertex.

o Once all the neighbors have been visited, push the vertex onto the stack.

o After all, vertices have been visited, pop elements from the stack and append them to the

output list until the stack is empty.
e The resulting list is the topologically sorted order of the graph.

Illustration Topological Sorting Algorithm:

Below image is an illustration of the above approach

':’-":;:"--.__ — ____..4:’:_1‘} .
N Step1:
v Y
(21 . i)
I) e s
Adjacency List (G) Step 3:

0 1 2 3 4 5

visited [False[False[False|False|False[False]

Step 5:

Topological Sort (0), visited[0] = True Step 2:

List Is Empty. Mo More Recursion Call

Stack

Topological Sort (2), visited[2] = True

|

Topological Sort (3), Visited[3] = True

|

11s Already Visited, No More Recurrsion Call

stack [0]1]3]2]

Step 4:

Step 6:

Topological Sort (B), Visited[5] = True
2,'0" Are Already Visited, No More Recurrsion Call

stack [0]1]2]3]4]5]

Topological Sort (1), visited([1] = True

!

List Is Ermpty. No More Recursion Call

stack [0]1]

Topological Sort (4), Visited[4] = True

!

0.1 Is Already Visited, No More Recurrsion Call

stack [0 1]2[3[4]

Print All Elements Of Stack From
Top To Bottom

AD3251 Data Structure Design

