TREES

INTRODUCTION TO TREES

$>$ A tree is non-linear and a hierarchical data structure consisting of a collection of nodes such that each node of the tree stores a value and a list of references to other nodes (the "children"). This data structure is a specialized method to organize and store data in the computer to be used more effectively.

Example of Tree data structure

Here,
$>$ Node A is the root node
$>\mathrm{B}$ is the parent of D and E
$>\mathrm{D}$ and E are the siblings
$>\mathrm{D}, \mathrm{E}, \mathrm{F}$ and G are the leaf nodes
$>\mathrm{A}$ and B are the ancestors of E

Basic Terminologies in Tree Data Structure

> Parent Node: The node which is a predecessor of a node is called the parent node of that node.
> Child Node: The node which is the immediate successor of a node is called the child node of that node.
> Root Node: The topmost node of a tree or the node which does not have any parent node is called the root node. A non-empty tree must contain exactly one root node and exactly one path from the root to all other nodes of the tree.
> Leaf Node or External Node: The nodes which do not have any child nodes are called leaf nodes.
> Ancestor of a Node: Any predecessor nodes on the path of the root to that node are called Ancestors of that node.
> Descendant: Any successor node on the path from the leaf node to that node.
> Sibling: Children of the same parent node are called siblings.
> Level of a node: The count of edges on the path from the root node to that node. The root node has level 0 .
> Internal node: A node with at least one child is called Internal Node.
> Neighbour of a Node: Parent or child nodes of that node are called neighbors of that node.
> Subtree: Any node of the tree along with its descendant.

Properties of a Tree

> Number of edges: An edge can be defined as the connection between two nodes. If a tree has N nodes, then it will have ($\mathrm{N}-1$) edges. There is only one path from each node to any other node of the tree.
> Depth of a node: The depth of a node is defined as the length of the path from the root to that node. Each edge adds 1 unit of length to the path. So, it can also be defined as the number of edges in the path from the root of the tree to the node.
> Height of a node: The height of a node can be defined as the length of the longest path from the node to a leaf node of the tree.
> Height of the Tree: The height of a tree is the length of the longest path from the root of the tree to a leaf node of the tree.
> Degree of a Node: The total count of subtrees attached to that node is called the degree of the node. The degree of a leaf node must be 0 . The degree of a tree is the maximum degree of a node among all the nodes in the tree.

Syntax for creating a node

struct Node

\{
int data;
struct Node *left_child;
struct Node *right_child;
\};

