
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CONTROL-FLOW STATEMENTS

Java Control statements control the order of execution in a java program, based on data
values and conditional logic.

There are three main categories of control flow statements;

· Selection statements: if, if-else and switch.
· Loop statements: while, do-while and for.
· Transfer statements: break, continue, return, try-catch-finally and assert.

We use control statements when we want to change the default sequential order of
execution

There are two types of decision making statements in Java. They are:

 if statements
 if-else statements
 nested if statements
 if-else if-else statements
 switch statements

if Statement:

 An if statement consists of a Boolean expression followed by one or more
statements.

 Block of statement is executed when the condition is true otherwise no
statement will be executed.

1. Selection statements (Decision Making Statement)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Syntax:
if(<conditional expression>)
{

< Statement Action>

}

If the Boolean expression evaluates to true then the block of code inside the if statement
will be executed.
If not the first set of code after the end of the if statement (after the closingcurly brace) will
be executed.

Flowchart:

Example:

public class IfStatementDemo {

public static void main(String[] args)
{
int a = 10, b = 20;
if (a > b)

System.out.println("a > b");
if (a < b)

System.out.println("b > a");
}

}

Output:

$java IfStatementDemo
b > a

if-else Statement:

The if/else statement is an extension of the if statement. If the statements in the

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

ifstatement fails, the statements in the else block are executed.

Syntax:

The if-else statement has the following syntax:

if(<conditional expression>)
{

< Statement Action1>

}

else

{

< Statement Action2>

}

Example:

public class IfElseStatementDemo {

public static void main(String[] args)

{

int a = 10, b = 20;

if (a > b) {

System.out.println("a > b");

}

else {

}

}

}

System.out.println("b > a");

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Output:

$java IfElseStatementDemo

b > a

Nested if Statement:

Nested if-else statements, is that using one if or else if statement inside
another if or else ifstatement(s).
Syntax:

if(condition1)
{

if(condition2)
{
//Executes this block if condition is True
}
else
{
//Executes this block if condition is false

}
}
else
{
//Executes this block if condition is false

}

Example-nested-if statement:

class NestedIfDemo
{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

public static void main(String args[])
{
int i = 10;
if (i ==10)
{
if (i < 15)
{
System.out.println("i is smaller than 15");
}
else
{
System.out.println("i is greater than 15");
}
}
else
{
System.out.println("i is greater than 15");
}
}
}

Output:

i is smaller than 15

if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is
veryuseful to test various conditions using single if...else if statement.
Syntax:

if(Boolean_expression 1){

//Executes when the Boolean expression 1 is true

}else if(Boolean_expression 2){

//Executes when the Boolean expression 2 is true

}else if(Boolean_expression 3){

//Executes when the Boolean expression 3 is true

}else {

//Executes when the none of the above condition is true.

}

Example:

public class Test {
public static void main(String args[]){

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Output:

Value of X is 30

switch Statement:

 The switch case statement, also called a case statement is a multi-way
branch with several choices. A switch is easier to implement than a
series of if/else statements.

 A switch statement allows a variable to be tested for equality against a list of

int x = 30;

if(x == 10){

System.out.print("Value of X is 10");

}else if(x == 20){

System.out.print("Value of X is 20");

}else if(x == 30){

System.out.print("Value of X is 30");

}else{

System.out.print("This is else statement");

}

}

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

values. Eachvalue is called a case, and the variable being switched on is checked
for each case.

 The switch statement begins with a keyword, followed by an expression that
equates to a no long integral value. Following the controlling expression is a
code block that contains zero or more labeled cases. Each label must equate to
an integer constant and each must be unique.

 When the switch statement executes, it compares the value of the controlling
expression to the values of each case label.

 The program will select the value of the case label that equals the value of the
controllingexpression and branch down that path to the end of the code block.

 If none of the case label values match, then none of the codes within the
switch statementcode block will be executed.

 Java includes a default label to use in cases where there are no matches.
We can have a nested switch within a case block of an outer switch.

Syntax:

switch (<expression>)

{

case label1:

<statement1>

case label2:
<statement2>

…

case labeln:

<statementn>
default:
<statement>

}

Example:

public class SwitchCaseStatementDemo {

public static void main(String[] args) {int a =

10, b = 20, c = 30;

int status = -1;

if (a > b && a > c) {

status = 1;

} else if (b > c) {

status = 2;

} else {

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

status = 3;

}

switch (status) {case 1:

System.out.println("a is the greatest");break;

case 2:

case 3:

default:

}

}

}

System.out.println("b is the greatest");break;

System.out.println("c is the greatest");break;

System.out.println("Cannot be determined");

Output:

c is the greatest

While Statement

2. Looping Statements (Iteration Statements)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 The while statement is a looping control statement that executes a blockof code while
a condition is true. It is entry controlled loop.

 You can either have a single statement or a block of code within the while loop.The
loop will never be executed if the testing expression evaluates to false.

 The loop condition must be a boolean expression.

Syntax:

The syntax of the while loop is

while (<loop condition>)

<statements>

Example:

public class WhileLoopDemo {

public static void main(String[] args) {int

count = 1;

System.out.println("Printing Numbers from 1 to 10");

while (count <= 10) {

System.out.println(count++);

}

}

}

Output

Printing Numbers from 1 to 10

1

2

3

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

4

5

6

7

8

9

10

do-while Loop Statement

 do while loop checks the condition after executing the statements atleast
once.

 Therefore it is called as Exit Controlled Loop.
 The do-while loop is similar to the while loop, except that the test is

performed at the endof the loop instead of at the beginning.
 This ensures that the loop will be executed at least once. A do-while loop

begins with the keyword do, followed by the statements that make up the
body of the loop.

Syntax:

do

<loop body>

}while (<loop condition>);

Example:

public class DoWhileLoopDemo {

public static void main(String[] args)

{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

int count = 1;

System.out.println("Printing Numbers from 1 to 10");

do {

System.out.println(count++);

} while (count <= 10);

}

}

Output:

Printing Numbers from 1 to 10

1

2

3

4

5

6

7

8

9

10

For Loops

The for loop is a looping construct which can execute a set of
instructions a specified number of times. It‘s a counter controlled loop.
A for statement consumes the initialization, condition and
increment/decrement in one line. It is the entry controlled loop.

Syntax:

for (<initialization>; <loop condition>; <increment expression>)

{

<loop body>

}

 The first part of a for statement is a starting initialization, which
executes once before the loop begins. The <initialization> section can
also be a comma-separatedlist of expression statements.

 The second part of a for statement is a test expression. As long as the
expression istrue, the loop will continue. If this expression is evaluated
as false the first time, theloop will never be executed.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 The third part of the for statement is the body of the loop. These are the
instructionsthat are repeated each time the program executes the loop.

 The final part of the for statement is an increment expression that
automatically executes after each repetition of the loop body. Typically,
this statement changes the value of the counter, which is then tested
to see if the loop should continue.
Exmple:

public class ForLoopDemo {
public static void main(String[] args)
{
System.out.println("Printing Numbers from 1 to

10");
for (int count = 1; count <= 10; count++)
{

System.out.println(count);
}

}
}

Output:

Printing Numbers from 1 to 10

1

2

3

4

5

6

7

8

9

10

Enhanced for loop or for- each loop:

As of Java 5, the enhanced for loop was introduced. This is mainly used for
Arrays.

 The for-each loop is used to traverse array or collection in java.
 It is easier to use than simple for loop because we don't need to

increment value and use subscript notation.
 It works on elements basis not index.
 It returns element one by one in the defined variable.

Syntax:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

for(declaration : expression)

//Statements

 Declaration: The newly declared block variable, which is of a type
compatible with the elements of the array you are accessing. The
variable will be available within the for block and its value would be the
same as the current array element.

 Expression: This evaluates to the array you need to loop through. The
expression can be an array variable or method call that returns an
array.

Example:

public class Test {

public static void main(String args[])

{

int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers)

{

System.out.print(x);

System.out.print(",");

}

System.out.print("\n\n");

String [] names ={"B", "C", "C++", "JAVA"};

for(String name : names)

{

System.out.print(name);

System.out.print(",");

}

}

}

Output:
10,20,30,40,50,

B,C,C++,JAVA

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

1. Transfer Statements / Loop Control Statements/Jump Statements)

1. break statement
2. continue statement

1. Using break Statement:

 The break keyword is used to stop the entire loop. The break
keyword must beused inside any loop or a switch statement.

 The break keyword will stop the execution of the innermost loop and
start executingthenext line of code after the block.
Syntax:

The syntax of a break is a single statement inside any loop:

Flowchart:

Example:

public class Test {
public static void main(String args[]) { int [] numbers = {10, 20, 30, 40, 50};
for(int x : numbers) { if(x == 30) { break;
}
System.out.print(x); System.out.print("\n");
}
}
}

break;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Output:
10
20

2. Using continue Statement:
 The continue keyword can be used in any of the loop control structures. It

causes theloop to immediately jump to the next iteration of the loop.
 The Java continue statement is used to continue loop. It continues the

current flow of the program and skips the remaining code at
specified condition. In case of inner loop, it continues only inner
loop.

Syntax:

The syntax of a continue is a single statement inside any loop:

continue;

Example:

public class Test {

public static void main(String args[]) {int

[] numbers = {10, 20, 30, 40, 50};

for(int x : numbers)

{

if(x == 30)

{

continue;

}

System.out.print(x);

System.out.print("\n");

}

}

}

Output:

10

20

40

50

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

DEFINING CLASSES and OBJECTS

A class is a collection of similar objects and it contains data and methods that operate
on that data. In other words ― Class is a blueprint or template for a set of objects
that share a common structure and a common behavior.

DEFINING A CLASS:

The keyword class is used to define a class.

Rules to be followed:

1. Classes must be enclosed in parentheses.
2. The class name, superclass name, instance variables and method names may be any

validJava identifiers.
3. The instance variable declaration and the statements of the methods must end

with ;(semicolon).
4. The keyword extends means derived from i.e. the class to the left of the

extends

(subclass) is derived from the class to the right of the extends (superclass).

Syntax to declare a class:

 The data, or variables, defined within a class are called instance variables.
 The code to do operations is contained within methods.
 Collectively, the methods and variables defined within a class are called members of

[public|abstract|final] class class_name [extends superclass_name implements interface_name]

{
data_type instance_variable1;

data_type instance_variable2;

.

.

data_type instance_variableN;

return_type method_name1(parameter list)

{

Body of the method

}

.

.

return_type method_nameN(parameter list)

{

Body of the method

}

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

the class.

 Variables defined within a class are called instance variables because each instance of
the class (that is, each object of the class) contains its own copy of these variables.

 Thus, the data for one object is separate and unique from the data for another.

 Example:

Program Explanation:

Class : keyword that initiates a class definition
Box : class name
Double : primitive data type
Height, depth, width: Instance variables
Void : return type of the method
Volume() : method name that has no parameters

DEFINING OBJECTS
An Object is an instance of a class. It is a blending of methods and data.

 It is a structured set of data with a set of operations for manipulating that data.
 The methods are the only gateway to access the data. In other words, the methods

and dataare grouped together and placed in a container called Object.

Characteristics of an object:

An object has three characteristics:

1) State: represents data (value) of an object.
2) Behavior: represents the behavior (functionality) of an object such as deposit,

withdraw etc.
3) Identity: Object identity is an unique ID used internally by the JVM to identify

each object uniquely.
For Example: Pen is an object. Its name is Reynolds, color is white etc. known

class box {

double width;

double height;

double depth;

void volume()

{

System.out.println(\n Volume is :);

Systme.out.println(width*height*depth);

}

}

Object = Data + Methods

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

as its state. It is used to write, so writing is its behavior.

CREATING OBJECTS:

Obtaining objects of a class is a two-step process:

1. Declare a variable of the class type – this variable does not define an object. Instead,it
is simply a variable that can refer to an object.
2. Use new operator to create the physical copy of the object and assign the referenceto
the declared variable.

NOTE: The new operator dynamically allocates memory for an object and returns a
referenceto it. This reference is the address in memory of the object allocated by new.

Advantage of using new operator: A program can create as many as objects it needs
duringthe execution of the program.

Syntax:

Example:

box b1=new box();(or)
box b2; b2=new box();

ACCESSING CLASS MEMBERS:

 Accessing the class members means accessing instance variable and instance methods in a
class.

 To access these members, a dot (.) operator is used along with the objects.

Syntax for accessing the instance members and methods:

Example:

class box
{

double width;
double height;

class_name object_name = new class_name();
(or)

class_name object_name;

object_name = new class_name();

object_name.variable_name;

object_name.method_name(parameter_list);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

double depth;
void volume()
{

System.out.print("\n Box Volume is : ");
System.out.println(width*height*depth+" cu.cms");

}
}
public class BoxVolume
{
public static void main(String[] args)
{

box b1=new box(); // creating object of type box

b1.width=10.00; // Accessing instance variables through object

b1.height=10.00;
b1.depth=10.00;

b1.volume(); // Accessing method through object

}
}

Output:

Box Volume is: 1000.0 cu.cms

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

METHODS

DEFINITION :

Syntax: Method:

modifier Return –type method_name(parameter_list) throws exception_list

{

// method body

}

The syntax shown above includes:

 modifier: It defines the access type of the method and it is optional to use.
 returnType: Method may return a value.
 Method_name: This is the method name. The method signature consists of the

methodname and the parameter list.
 Parameter List: The list of parameters, it is the type, order, and number of

parameters of a method. These are optional, method may contain zero
parameters.

 method body: The method body defines what the method does with statements.

Example:

This method takes two parameters num1 and num2 and returns the maximum between
the two:

/** the snippet returns the minimum between two numbers */
public static int minFunction(int n1, int n2)
{

int min;
if (n1 > n2)

min = n2;
else

min = n1;
return min;

}

 METHOD CALLING (Example for Method that takes parameters and returning

value):
 For using a method, it should be called.

A Java method is a collection of statements that are grouped together to perform an

operation.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 A method may take any no. of arguments.
 A parameter is a variable defined by a method that receives a value when the

method is called. For example, in square(), i is a parameter.
 An argument is a value that is passed to a method when it is invoked. For

example, square(100) passes 100 as an argument. Inside square(), the
parameter i receives that value.

 There are two ways in which a method is called.
• calling a method that returns a value or
• calling a method returning nothing (no return value).
 The process of method calling is simple. When a program invokes a method, the

programcontrol gets transferred to the called method.
 This called method then returns control to the caller in two conditions, when:
1. return statement is executed.
2. reaches the method ending closing brace.

 Example:

Following is the example to demonstrate how to define a method and how to call it:
public class ExampleMinNumber
{
public static void main(String[] args)
{
int a = 11;
int b = 6;
int c = minFunction(a, b);
System.out.println("Minimum Value = " + c);
}

/** returns the minimum of two numbers */
public static int minFunction(int n1, int n2)
{

int min;
if (n1 > n2)

min = n2;
else

min = n1;
return min;

}
}

This would produce the following result:
Minimum value = 6

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 ACCESS SPECIFIERS

Definition:

Java classes, fields, constructors and methods can have one of four
different accessmodifiers:
1. Public
2. Private
3. Protected
4. Default (package)

Access specifiers are used to specify the visibility and accessibility of a class

constructors, member variables and methods.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

1. Public (anything declared as public can be accessed from anywhere):

A variable or method declared/defined with the public modifier can be accessed
anywhere in the program through its class objects, through its subclass objects
andthrough the objects of classes of other packages also.

2. Private (anything declared as private can’t be seen outside of the class):

The instance variable or instance methods declared/initialized as private can be
accessedonly by its class. Even its subclass is not able to access the private members.

3. Protected (anything declared as protected can be accessed by classes in

the samepackage and subclasses in the other packages):
The protected access specifier makes the instance variables and instance methods
visibleto all the classes, subclasses of that package and subclasses of other packages.

4. Default (can be accessed only by the classes in the same package):

The default access modifier is friendly. This is similar to public modifier except only
theclasses belonging to a particular package knows the variables and methods.

Example: Illustrating the visibility of access specifiers:

Z:\MyPack\FirstClass.java

package MyPack;

public class FirstClass
{

public String i="I am public variable";
protected String j="I am protected variable";

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

private String k="I am private variable";
String r="I dont have any modifier";

}

Z:\MyPack2\SecondClass.java

package MyPack2;
import MyPack.FirstClass;
class SecondClass extends FirstClass {

void method()
{

System.out.println(i); // No Error: Will print "I am public variable".
System.out.println(j); // No Error: Will print “I am protected variable”.
System.out.println(k); // Error: k has private access in FirstClass
System.out.println(r); // Error: r is not public in FirstClass; cannot be accessed

// from outside package
}

public static void main(String arg[])
{

SecondClass obj=new SecondClass();
obj.method();

}
}

Output:

I am public variable
I am protected variable

Exception in thread "main" java.lang.RuntimeException: Uncompilable source code - k
has private access in MyPack.FirstClass

“static” MEMBERS

Static Members are data members (variables) or methods that belong to a static
or non-static class rather than to the objects of the class. Hence it is not necessary
to create object of that class to invoke static members.

 The static can be:

1. variable (also known as class variable)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

2. method (also known as class method)
3. block
4. nested class

 Static Variable:

 When a member variable is declared with the static keyword, then it is called
static variable and it can be accessed before any objects of its class are created,
and without reference to any object.

 Syntax to declare a static variable:

[access_spefier] static data_type instance_variable;

 When a static variable is loaded in memory (static pool) it creates only a single copy
of static variable and shared among all the objects of the class.

 A static variable can be accessed outside of its class directly by the class name
anddoesn‘t need any object.

Syntax : <class-name>.<variable-name>

Advantages of static variable

 It makes your program memory efficient (i.e., it saves memory).

 Static Method:

If a method is declared with the static keyword , then it is known as static
method.

 A static method belongs to the class rather than the object of a class.
 A static method can be invoked without the need for creating an instance of a class.
 A static method can access static data member and can change the value of it.

o Syntax: (defining static method)

o Syntax to access static method:

 Methods declared as static have several restrictions:

 They can only directly call other static methods.
 They can only directly access static data.
 They cannot refer to this or super in any way.

<class-name>.<method-name>

[access_specifier] static Return_type method_name(parameter_list)

// method body

 The most common example of a static member is main(). main() is declared as static

because it must be called before any objects exist.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Static Block:

Static block is used to initialize the static data member like constructors
helps toinitialize instance members and it gets executed exactly once, when the
class is first loaded.

It is executed before main method at the time of class loading in JVM.

Syntax:

The following example shows a class that has a static method, some static variables,
and a static
initialization block:

// Demonstrate static variables, methods, and blocks.

1. class Student

2. {

3. int rollno;
4. String name;
5. static String college = "ITS";
6. //static method to change the value of static variable

7. static void change(){
8. college = "BBDIT";

9. }

10. //constructor to initialize the variable

11. Student(int r, String n){
12. rollno = r;
13. name = n;

14. }

15. //method to display values

16. void display()

17. {
18. System.out.println(rollno+" "+name+" "+college);
19. }
20. }

21. //Test class to create and display the values of object

22. public class TestStaticMembers

class classname

{
static

{

// block of statements

}

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

23. {
24. static
25. {
26. System.out.println(―*** STATIC MEMBERS – DEMO ***‖);
27. }
28.
29. public static void main(String args[])
30. {

31. Student.change(); //calling change method

32. //creating objects

33. Student s1 = new Student(111,"Karan");
34. Student s2 = new Student(222,"Aryan");
35. Student s3 = new Student(333,"Sonoo");
36. //calling display method
37. s1.display();
38. s2.display();
39. s3.display();

40. }
41. }

Here is the output of this program:

*** STATIC MEMBERS – DEMO ***

111 Karan BBDIT

222 Aryan BBDIT

333 Sonoo BBDIT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 JavaDoc Comments

Definition:

Input: Java source files (.java)

 Individual source files
 Root directory of the source files

Output: HTML files documenting specification of java code

 One file for each class defined
 Package and overview files

HOW TO INSERT COMMENTS?

The javadoc utility extracts information for the following items:

• Packages
• Public classes and interfaces
• Public and protected methods
• Public and protected fields

Each comment is placed immediately above the feature it describes.

 Format:

 A Javadoc comment precedes similar to a multi-line comment except that it
beginswith a forward slash followed by two asterisks (/**) and ends with a
*/

 Each /** . . . */ documentation comment contains free-form text followed by
tags.

 A tag starts with an @, such as @author or @param.
 The first sentence of the free-form text should be a summary statement.
 The javadoc utility automatically generates summary pages that extract

thesesentences.
 In the free-form text, you can use HTML modifiers such as ...

foremphasis, <code>...</code> for a monospaced ―typewriter
font, ... for strong emphasis, and even to include
an image.

 Example:

/**
This is a doc comment.
*/

Javadoc is a tool which comes with JDK and it is used for generating Java code

documentation in HTML format from Java source code. Java documentation can be

created as part of the source code.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

TYPES OF COMMENTS:

1. Class Comments

The class comment must be placed after any import statements, directly before the
classdefinition.
Example:

import java.io.*;
/** class comments should be written here */Public class sample
{
….
}

2. Method Comments

The method comments must be placed immediately before the method that it
describes.

Tags used:

Tag Description

Syntax

@param It describes the method parameter @param name description

@return This tag describes the return value
from a method with the exception void
methods and
constructors.

@return description

@throw
s

This tag describes the method that
throws an
exception.

@throws class description

Example:

/** adding two numbers

@param a & b are two numbers to be added
@return the result of addition
**/

public double add(int a,int b)
{
int c=a+b;
return c;
}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

3. Field Comments

Field comments are used to document public fields—generally that means static
constants.

For example:

/**
* Account number
*/
public static final int acc_no = 101;

4. General Comments

Tag Description Syntax

The following tags can be used in class documentation comments

@author This tag makes an ―author entry. You can
have multiple @author tags, one for each
author.

@author name

@version This tag makes a ―version‖ entry. The text can

be any description of the current version.

@version text

The following tags can be used in all documentation comments

@since This tag makes a ―since‖ entry. The text can
be any description of the version that
introduced this feature.
For example, @since version 1.7.1

@since text

@deprecate
d

This tag adds a comment that the class,
method, or variable should no longer be used.
The text should suggest a replacement.
For example:

@deprecated

Use <code>setVisible(true)</code>instead

@deprecated text

Hyperlinks to other relevant parts of the javadoc documentation, or to external

documents,with the @see and @link tags.
@link This tag place hyperlinks to other classes

or methods anywhere in any of your
documentationcomments.

{@link
package.class#feature
label}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

@see This tag adds a hyperlink in the ―see also
section. It can be used with both classes and
methods. Here, reference can be one of the
following:
package.class#feature label

label
"text"
Example:

@see ―Core java 2

@see Core Java

@see reference

COMMENT EXTRACTION

Here, docDirectory is the name of the directory where you want the HTML files to go.
Follow these steps:

1. Change to the directory that contains the source files you want to document.
2. To create the document API, you need to use the javadoc tool followed by
java file name.There is no need to compile the javafile.
Here, docDirectory is the name of the directory where you want the HTML files to go.

Follow these steps:

1. Change to the directory that contains the source files you want to document.
2. Run the command

javadoc -d docDirectory nameOfPackage

for a single package. Or run

javadoc -d docDirectory nameOfPackage1 nameOfPackage2...

to document multiple packages.

If your files are in the default package, then instead run

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, then the HTML files are extracted to
the currentdirectory.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Example:

OUTPUT:

D:\OOPs\Programs\JavaDoc>javadoc -d FindAvgDocument FindAvg.java
Loading source file FindAvg.java...
Constructing Javadoc information...

Creating destination directory: "FindAvgDocument\"

Standard Doclet version 1.8.0_251

//Java program to illustrate frequently used

// Comment tags

/**

* <h1>Find average of three numbers!</h1>

* The FindAvg program implements an application that

* simply calculates average of three integers and Prints

* the output on the screen.

*

* @author Pratik Agarwal

* @version 1.0

* @since 2017-02-18
*/

public class FindAvg

{

/**

* This method is used to find average of three integers.

* @param numA This is the first parameter to findAvg method

* @param numB This is the second parameter to findAvg method

* @param numC This is the third parameter to findAvg method

* @return int This returns average of numA, numB and numC.

*/

public int findAvg(int numA, int numB, int numC)
{

return (numA + numB + numC)/3;

}

/**

* This is the main method which makes use of findAvg method.

* @param args Unused.

* @return Nothing.

*/

public static void main(String args[])

{

FindAvg obj = new FindAvg();

int avg = obj.findAvg(10, 20, 30);

System.out.println("Average of 10, 20 and 30 is :" + avg);

}

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Building tree for all the packages and classes...

Generating FindAvgDocument\FindAvg.html...

FindAvg.java:32: error: invalid use of @return

* @return Nothing.

^

Generating FindAvgDocument\package-frame.html...

Generating FindAvgDocument\package-summary.html...

Generating FindAvgDocument\package-tree.html...

Generating FindAvgDocument\constant-values.html...
Building index for all the packages and classes...

Generating FindAvgDocument\overview-tree.html...

Generating FindAvgDocument\index-all.html...

Generating FindAvgDocument\deprecated-list.html...

Building index for all classes...

Generating FindAvgDocument\allclasses-frame.html...

Generating FindAvgDocument\allclasses-noframe.html...

Generating FindAvgDocument\index.html...

Generating FindAvgDocument\help-doc.html...

1 error

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Additional Topics
Comments, Literals, Keywords, Type Conversion, Garbage Collection,

Command Line Arguments

 JAVA – COMMENTS

 Java comments are either explanations of the source code or descriptions of
classes, interfaces, methods, and fields.

 They are usually a couple of lines written above or beside Java code to clarify
what it does.

 Comments in Java do not show up in the executable program.
 The Java language supports three kinds of comments:

1. Line comment:

 When you want to make a one line comment type "//" and follow the
two forward slasheswith your comment.

 Syntax: // text
 Example: // this is a single line comment
 The compiler ignores everything from // to the end of the line.

2. Block Comment:

 To start a block comment type "/*". Everything between the forward
slash and asterisk, even if it's on a different line, will be treated as
comment until the characters "*/" end the comment.

 Syntax: /* text */
 Example: /* it is a comment */ (or)

/* thisis a block
comment
*/

 The compiler ignores everything from /* to */.

3. Documentation Comment:

 This type of comment helps is generating the documentation automatically.
 Syntax: /** documentation */

The JDK javadoc tool uses doc comments when preparing
automatically generated documentation. For more information on
javadoc, see the Java tool documentation.

 Example:

/*

* Title: Conversion of Degrees
* Aim: To convert Celsius to Fahrenheit and vice versa

* Date: 31/08/2000

* Author: Tim

*/

http://java.sun.com/products/JDK/tools/index.html
http://java.sun.com/products/JDK/tools/index.html

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 : JAVA - CONSTANTS

 A constant is an identifier written in uppercase (convention and not a rule) that
prevents
its contents form being modified by the program during the execution.

 If an attempt is made to change the value, the compiler will give an error message.
 In Java, the keyword final is used to declare constants.
 The value of a final variable cannot change after it has been initialized.

 Syntax:
 Example:final float PI=3.14f;

 : JAVA - IDENTIFIERS

 Identifiers are names given to the variables, classes, methods, objects, labels,
package and interface in our program.

 The name we are giving must be meaningful and it may have random length.
 The following rule must be followed while giving a name:

1. The first character must not begin with a number.
2. The identifier is formed with alphabets, number, dollar sign ($) and underscore

(_).
3. It should not be a reserved word.
4. Space is not allowed in between the identifier name.

 Example:

String name = "Homer Jay Simpson";
int weight = 300;
double height = 6;

 : JAVA – RESERVED WORDS (KEYWORDS)

 There are some words that you cannot use as object or variable names in a Java
program. These words are known as reserved words; they are keywords that are
already used by the syntax of the Java programming language.

 For example, if you try and create a new class and name it using a reserved word:

// you can't use finally as it's a reserved word!
class finally {
public static void main(String[] args)
{

final datatype variablename=value;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

//class code..
}
}

 It will not compile, instead you will get the following error: <identifier> expected
 The table below lists all the words that are reserved:

abstract Assert boolean Break byte case

catch Char class const* continue default

double Do else Enum extends false

final Finally float For goto* if

implement

s

Import instanceo

f

Int interfac

e

long

native New null packag

e

private protecte

d

public Return short Static strictfp super

switch Synchronized this Throw throws transien

t

True Try void volatile while

 TYPE CONVERSIONS AND CASTING

Type Conversion is the task of converting one data type into another data type.

Two types of type conversion:

1. Implicit Type Conversion (or) Automatic Conversion
2. Explicit Type Conversion (or) Casitng

1. Implicit Type Conversion (or) Automatic Conversion;

If the two types are compatible, then Java will perform the conversion automatically.
When one type of data is assigned to another type of variable, an Automatic type
conversion (or) WideningConversion will take place if the following two conditions are
met:

 Two types are compatible
 The destination type is larger than the source type

.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Example:

byte a=100;
int b=a; // b is larger than a

long d=b; // d is large than b

float e=b; // e is larger than b

float sum=10;

int s=sum; // s is smaller than sum, So we need to go for explicit conversion.

1. Explicit Type Conversion (or) Casting:

If the two types are compatible, a forced conversion of one type into another type is
performed This forced conversion is called as Explicit Type Conversion. Casting (or)
narrowing conversion is an operation which performs an explicit conversion
between incompatible types.

Example: converting int to byte.
Syntax to perform “Cast”:

(target-type) value;

Here,
Target-type = specifies the desired type to convert the specified value.

Example:

class conversion {

public static void main(String arg[])

{

byte b;
int i=257;
double d=323.142;

System.out.println(“\nConversion of int to byte: “);
b=(byte) i;
System.out.println(“i and b : “+i+” , “+b);

System.out.println(“\nConversion of double to int: “);
i=(int) d;
System.out.println(“d and i : “+d+” , “+i);

System.out.println(“\nConversion of double to byte: “);
b=(byte) d;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

System.out.println(“d and b : “+d+” , “+b);

// Automatic Type promotions in expressions

byte r=40;
byte s=50;
byte t=100;
int p=r * s / t 3; // r*s exceeds the range of byte, so automatic type promotion take place.

System.out.println(“Value of P = “+p);
s=s*2; //Error! cannot assign int to a byte.

s=(byte)(s*2); // Possible.

}

}

Output:

Conversion of int to byte:
i and b : 257 , 1
Conversion of int to byte:
d and i : 323.142 , 323
Conversion of int to byte:
d and b : 323.142 , 67
Value of P = 20

Type Promotions rules:

1. All byte, short and char values are promoted to int.
2. If one operand is long, the whole expression is promoted to long.
3. If one operand is float, the whole expression is promoted to float.
4. If any of the operand is double, the result is double.

 GARBAGE COLLECTION
 Since objects are dynamically allocated by using the new operator, you might be

wondering how such objects are destroyed and their memory released for later
reallocation.

 In some languages, such as C++, dynamically allocated objects must be manually
released by use of a delete operator.

 Java takes a different approach;

Automatic Garbage Collection: The technique that accomplishes automatic
deallocation of memory occupied by an unused object is called garbage collection.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

It works like this:

 When no references to an object exist, that object is assumed to be no longer
needed, and the memory occupied by the object can be reclaimed. There is no
explicit need to destroy objects as in C++.

 Garbage collection only occurs sporadically (if at all) during the execution of your
program.

 Finalization:

 Sometimes an object will need to perform some action when it is destroyed. For
example, if an object is holding some non-Java resource such as a file handle or
character font, then you might want to make sure these resources are freed before
an object is destroyed.

 To handle such situations, Java provides a mechanism called finalization. By using
finalization, you can define specific actions that will occur when an object is just
about tobe reclaimed by the garbage collector.

 Finalize() method:

A finalize() method is a method that will be called by the garbage collector on an
object when garbage collection determines that there are no more references to the
object.

Inside the finalize() method, we will specify those actions that must be performed
before anobject is destroyed.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code
definedoutside its class.

Example:

public class TestGarbage1
{
public void finalize()
{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

System.out.println("object is garbage collected");
}

public static void main(String args[])
{
TestGarbage1 s1=new TestGarbage1();
TestGarbage1 s2=new TestGarbage1();
s1=null;
s2=null;
System.gc();
}
}

Output:

object is garbage collectedobject is garbage collected

 USING COMMAND LINE ARGUMENTS:

 Sometimes you will want to pass information into a program when you run it.
This is accomplished by passing command-line arguments to main().

 A command-line argument is the information passed to the main() method

that directly follows the program’s name on the command line when it is
executed.

 To access the command-line arguments inside a Java program is quite easy—they are

stored as strings in a String array passed to the args parameter of main().
 The first command-line argument is stored at args[0], the second at args[1], and so

on.
 For example, the following program displays all of the command-line arguments that

it iscalled with:
// Display all command-line arguments.

class CommandLine
{
public static void main(String args[])
{
for(int i=0; i<args.length; i++)

System.out.println("args[" + i + "]: " + args[i]);
}
}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Try executing this program, as shown here:

>java CommandLine this is a test 100 -1
When you do, you will see the following output:
args[0]: this
args[1]: is
args[2]: a
args[3]: test
args[4]: 100
args[5]: -1

	if(<conditional expression>)
	Output:
	Syntax:
	if(<conditional expression>)

	Example:
	Output: (1)
	Nested if Statement:
	Syntax: (1)
	Example-nested-if statement:
	Output: (2)
	if...else if...else Statement:
	Syntax: (2)
	//Executes when the Boolean expression 1 is true
	//Executes when the Boolean expression 2 is true
	//Executes when the Boolean expression 3 is true
	//Executes when the none of the above condition is true.
	Example: (1)
	Output: (3)
	Syntax: (3)
	switch (<expression>)
	case label1:
	<statement2>
	case labeln:
	<statement>
	Example:

	Output: (4)
	Syntax: (4)
	while (<loop condition>)
	Example: (2)
	Output
	do-while Loop Statement
	Syntax: (5)
	Output: (5)
	For Loops
	Syntax: (6)
	{
	}
	Exmple:
	Output: (6)
	Enhanced for loop or for- each loop:
	Example: (3)
	1. Transfer Statements / Loop Control Statements/Jump Statements)
	1. Using break Statement:
	Syntax:
	Example:
	continue;
	Output:
	DEFINING A CLASS:
	extends
	Syntax to declare a class:
	 Example:
	Characteristics of an object:
	CREATING OBJECTS:
	Syntax: (1)
	ACCESSING CLASS MEMBERS:
	Syntax for accessing the instance members and methods:
	Output: (1)
	DEFINITION :
	Example: (1)
	 METHOD CALLING (Example for Method that takes parameters and returning value):
	 Example: (1)
	Definition:
	1. Public (anything declared as public can be accessed from anywhere):
	2. Private (anything declared as private can’t be seen outside of the class):
	3. Protected (anything declared as protected can be accessed by classes in the samepackage and subclasses in the other packages):
	4. Default (can be accessed only by the classes in the same package):
	Example: Illustrating the visibility of access specifiers:
	Z:\MyPack2\SecondClass.java
	Output: (2)
	Static Members are data members (variables) or methods that belong to a static or non-static class rather than to the objects of the class. Hence it is not necessary to create object of that class to invoke static members.
	 Static Variable:
	[access_spefier] static data_type instance_variable;
	Syntax : <class-name>.<variable-name>
	 Static Method:
	o Syntax: (defining static method)
	 Static Block:
	Syntax: (2)
	Definition: (1)
	HOW TO INSERT COMMENTS?
	Format:
	TYPES OF COMMENTS:
	Tags used:
	/** adding two numbers
	**/
	javadoc -d docDirectory nameOfPackage
	javadoc -d docDirectory nameOfPackage1 nameOfPackage2...
	javadoc -d docDirectory *.java
	Example: (2)
	1. Line comment:
	2. Block Comment:
	3. Documentation Comment:
	 Example: (2)

	: JAVA - CONSTANTS
	 Syntax:

	: JAVA - IDENTIFIERS
	 Example:

	: JAVA – RESERVED WORDS (KEYWORDS)
	TYPE CONVERSIONS AND CASTING
	Type Conversion is the task of converting one data type into another data type.
	1. Implicit Type Conversion (or) Automatic Conversion;
	Example:
	float sum=10;
	1. Explicit Type Conversion (or) Casting:
	Example: converting int to byte. Syntax to perform “Cast”:
	Example: (1)
	public static void main(String arg[])
	byte b; int i=257;
	System.out.println(“\nConversion of int to byte: “); b=(byte) i;
	System.out.println(“\nConversion of double to int: “); i=(int) d;
	System.out.println(“d and b : “+d+” , “+b);
	byte r=40; byte s=50; byte t=100;
	}
	Output:
	Type Promotions rules:
	It works like this:
	 Finalization:
	 Finalize() method:
	protected void finalize()
	// finalization code here
	Example: (2)
	Output: (1)
	 A command-line argument is the information passed to the main() method that directly follows the program’s name on the command line when it is executed.
	>java CommandLine this is a test 100 -1

