
1.0 INTRODUCTION

The flow of ideal non-viscous fluids was extensively studied and mathematical theories were
developed during the last century. The field of study was called as ‘Hydrodynamics’. However
the results of mathematical analysis could not be applied directly to the flow of real fluids.
Experiments with water flow resulted in the formulation of empirical equations applicable to
engineering designs. The field was called Hydraulics. Due to the development of industries
there arose a need for the study of fluids other than water. Theories like boundary layer theory
were developed which could be applied to all types of real fluids, under various conditions of
flow. The combination of experiments, the mathematical analysis of hydrodynamics and the
new theories is known as ‘Fluid Mechanics’. Fluid Mechanics encompasses the study of
all types of fluids under static, kinematic and dynamic conditions.

The study of properties of fluids is basic for the understanding of flow or static condition
of fluids. The important properties are density, viscosity, surface tension, bulk modulus
and vapour pressure. Viscosity causes resistance to flow. Surface tension leads to capillary
effects. Bulk modulus is involved in the propagation of disturbances like sound waves in fluids.
Vapour pressure can cause flow disturbances due to evaporation at locations of low pressure.
It plays an important role in cavitation studies in fluid machinery.

In this chapter various properties of fluids are discussed in detail, with stress on their
effect on flow. Fairly elaborate treatment is attempted due to their importance in engineering
applications. The basic laws used in the discussions are :

(i) Newton’s laws of motion,

(ii) Laws of conservation of mass and energy,

(iii) Laws of Thermodynamics, and

(iv) Newton’s law of viscosity.

A fluid is defined as a material which will continue to deform with the
application of shear force however small the force may be.

Chapter-1 Physical Properties of Fluids
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Generally matter exists in three phases namely (i) Solid (ii) Liquid and (iii) Gas (includes
vapour). The last two together are also called by the common term fluids.

In solids atoms/molecules are closely spaced and the attractive (cohesive) forces between
atoms/molecules is high. The shape is maintained by the cohesive forces binding the atoms.
When an external force is applied on a solid component, slight rearrangement in atomic positions
balances the force. Depending upon the nature of force the solid may elongate or shorten or
bend. When the applied force is removed the atoms move back to the original position and the
former shape is regained. Only when the forces exceed a certain value (yield), a small
deformation called plastic deformation will be retained as the atoms are unable to move to
their original positions. When the force exceeds a still higher value (ultimate), the cohesive
forces are not adequate to resist the applied force and the component will break.

In liquids the inter molecular distances are longer and the cohesive forces are of smaller
in magnitude. The molecules are not bound rigidly as in solids and can move randomly. However,
the cohesive forces are large enough to hold the molecules together below a free surface that
forms in the container. Liquids will continue to deform when a shear or tangential force is
applied. The deformation continues as long as the force exists. In fluids the rate of deformation
controls the force (not deformation as in solids). More popularly it is stated that a fluid (liquid)
cannot withstand applied shear force and will continue to deform. When at rest liquids will
assume the shape of the container forming a free surface at the top.

In gases the distance between molecules is much larger compared to atomic dimensions
and the cohesive force between atoms/molecules is low. So gas molecules move freely and fill
the full volume of the container. If the container is open the molecules will diffuse to the
outside. Gases also cannot withstand shear. The rate of deformation is proportional to the
applied force as in the case of liquids.

Liquids and gases together are classified as fluids. Vapour is gaseous state near the
evaporation temperature. The state in which a material exists depends on the pressure and
temperature. For example, steel at atmospheric temperature exists in the solid state. At higher
temperatures it can be liquefied. At still higher temperatures it will exist as a vapour.

A fourth state of matter is its existence as charged particles or ions known as plasma.
This is encountered in MHD power generation. This phase is not considered in the text.

1.2 COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS

If the density of a fluid varies significantly due to moderate changes in pressure or
temperature, then the fluid is called compressible fluid. Generally gases and vapours
under normal conditions can be classified as compressible fluids. In these phases the distance
between atoms or molecules is large and cohesive forces are small. So increase in pressure or
temperature will change the density by a significant value.

If the change in density of a fluid is small due to changes in temperature and
or pressure, then the fluid is called incompressible fluid. All liquids are classified under
this category.

1.1 THREE PHASES OF MATTER
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When the change in pressure and temperature is small, gases and vapours are treated
as incompressible fluids. For certain applications like propagation of pressure disturbances,
liquids should be considered as compressible.

In this chapter some of the properties relevant to fluid mechanics are discussed with a
view to bring out their influence on the design and operation of fluid machinery and equipments.

1.3 DIMENSIONS AND UNITS

It is necessary to distinguish clearly between the terms “Units” and “Dimensions”. The word
“dimension” is used to describe basic concepts like mass, length, time, temperature and force.
“Large mass, long distance, high temperature” does not mean much in terms of visualising the
quantity. Dimension merely describes the concept and does not provide any method for the
quantitative expression of the same. Units are the means of expressing the value of the
dimension quantitatively or numerically The term “second” for example is used to quantify
time. “Ten seconds elapsed between starting and ending of an act” is the way of expressing the
elapsed time in numerical form. The value of dimension should be expressed in terms of units
before any quantitative assessment can be made.

There are three widely used systems of units in the world. These are (1) British or
English system (it is not in official use now in Briton) (2) Metric system and (3) SI system
(System International d’Unites or International System of Units). India has passed through
the first two systems in that order and has now adopted the SI system of units.

The basic units required in Fluid Mechanics are for mass, length, time and temperature.
These are kilogram (kg), metre (m), second (s) and kelvin (K). The unit of force is defined
using Newton’s second law of motion which states that applied force is proportional to the time
rate of change of momentum of the body on which the force acts.

For a given mass m, subjected to the action of a force F, resulting in an acceleration a,
Newton’s law can be written in the form

 F = (1/go) m a (1.3.1)

where go is a dimensional constant whose numerical value and units depend on those selected
for force, F, mass, m, and acceleration, a. The unit of force is newton (N) in the SI system.

One newton is defined as the force which acting on a mass of one kilogram will produce
an acceleration of 1 m/s2. This leads to the relation

1 N = (1/go) ××××× 1 kg ××××× 1 m/s2 (1.3.2)

Hence   go = 1 kg m/N s2 (1.3.3)
The numerical value of go is unity (1) in the SI system and this is found advantageous in

numerical calculations. However this constant should necessarily be used to obtain dimensional
homogeneity in equations.

In metric system the unit of force is kgf defined as the force acted on one kg mass by
standard gravitational acceleration taken as 9.81 m/s2. The value of go is 9.81 kg m/kgfs

2.
In the English system the unit of force is lbf 

2.
The value of go is 32.2 ft lb/lbf s

2.

 defined as the force on one lb mass due to
standard gravitational acceleration of 32.2 ft/s
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Some of the units used in this text are listed in the table below:

Quantity Unit symbol Derived units

mass kg ton (tonne) = 1000 kg

time s min (60s), hr (3600s)

length m mm, cm, km

temperature K, (273 + °C) °C

force N (newton) kN, MN (106 N)

energy, work, heat Nm, J kJ, MJ, kNm

power W = (Nm/s, J/s) kW, MW

pressure N/m2, (pascal, pa) kPa, MPa, bar (105Pa)

Conversion constants between the metric and SI system of units are tabulated elsewhere
in the text.

As gas molecules are far apart from each other and as there is empty space between molecules
doubt arises as to whether a gas volume can be considered as a continuous matter like a solid
for situations similar to application of forces.

Under normal pressure and temperature levels, gases are considered as a continuum
(i.e., as if no empty spaces exist between atoms). The test for continuum is to measure properties
like density by sampling at different locations and also reducing the sampling volume to low
levels. If the property is constant irrespective of the location and size of sample volume, then
the gas body can be considered as a continuum for purposes of mechanics (application of force,
consideration of acceleration, velocity etc.) and for the gas volume to be considered as a single
body or entity. This is a very important test for the application of all laws of mechanics to a gas
volume as a whole. When the pressure is extremely low, and when there are only few molecules
in a cubic metre of volume, then the laws of mechanics should be applied to the molecules as
entities and not to the gas body as a whole. In this text, only systems satisfying continuum
requirements are discussed.

Density (mass density): The mass per unit volume is defined as density. The unit used is kg/m3.
The measurement is simple in the case of solids and liquids. In the case of gases and vapours
it is rather involved. The symbol used is ρ. The characteristic equation for gases provides a
means to estimate the density from the measurement of pressure, temperature and volume.

Specific Volume: The volume occupied by unit mass is called the specific volume of the
material. The symbol used is v, the unit being m3/kg. Specific volume is the reciprocal of density.

1.4 CONTINUUM

1.5 DEFINITION OF SOME COMMON TERMINOLOGY
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In the case of solids and liquids, the change in density or specific volume with changes
in pressure and temperature is rather small, whereas in the case of gases and vapours, density
will change significantly due to changes in pressure and/or temperature.

Weight Density or Specific Weight: The force due to gravity on the mass in unit
volume is defined as Weight Density or Specific Weight. The unit used is N/m3. The symbol
used is γ. At a location where g is the local acceleration due to gravity,

Specific weight,  γ  γ  γ  γ  γ = g ρρρρρ (1.5.1)
In the above equation direct substitution of dimensions will show apparent non-

homogeneity as the dimensions on the LHS and RHS will not be the same. On the LHS the
dimension will be N/m3 but on the RHS it is kg/m2 s2. The use of go will clear this anomaly. As
seen in section 1.1, go = 1 kg m/N s2. The RHS of the equation 1.3.1 when divided by go  will lead
to perfect dimensional homogeneity. The equation should preferably be written as,

Specific weight, γ γ γ γ γ = (g/go) ρρρρρ (1.5.2)
Since newton (N) is defined as the force required to accelerate 1 kg of mass by 1/s2,  it

can also be expressed as kg.m/s2. Density can also be expressed as Ns2/m4 (as kg = Ns2/m).
Beam balances compare the mass while spring balances compare the weights. The mass is the
same (invariant) irrespective of location but the weight will vary according to the local
gravitational constant. Density will be invariant while specific weight will vary with variations
in gravitational acceleration.

Specific Gravity or Relative Density: The ratio of the density of the fluid to the
density of water—usually 1000 kg/m3 at a standard condition—is defined as Specific Gravity
or Relative Density δ of fluids. This is a ratio and hence no dimension or unit is involved.

Example 1.1. The weight of an object measured on ground level where ge = 9.81 m/s2  is 35,000 N.
Calculate its weight at the following locations (i) Moon, gm = 1.62 m/s2 (ii) Sun, gs =  274.68 m/s2 (iii)
Mercury, gme = 3.53 m/s2 (iv) Jupiter, gj = 26.0 m/s2 (v) Saturn, gsa = 11.2 m/s2 and (vi) Venus, gv =
8.54 m/s2.

Mass of the object, me = weight × (go/g) = 35,000 × (1/9.81) =  3567.8 kg

Weight of the object on a planet, p = me × (gp/go) where me is the mass on earth, gp is gravity on the
planet and go has the usual meaning, force conversion constant.

Hence the weight of the given object on,

(i) Moon = 3567.8 × 1.62 = 5,780 N

(ii) Sun = 3567.8 × 274.68 = 9,80,000 N

(iii) Mercury = 3567.8 × 3.53 = 12,594 N

(iv) Jupiter = 3567.8 × 26.0 = 92,762 N

(v) Saturn = 3567.8 × 11.2 = 39,959 N

(vi) Venus = 3567.8 × 8.54 = 30,469 N

Note that the mass is constant whereas the weight varies directly with the gravitational constant.
Also note that the ratio of weights will be the same as the ratio of gravity values.

1.6 VAPOUR AND GAS

When a liquid is heated under a constant pressure, first its temperature rises to the boiling
point (defined as saturation temperature). Then the liquid begins to change its phase to the
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gaseous condition, with molecules escaping from the surface due to higher thermal energy
level. When the gas phase is in contact with the liquid or its temperature is near the
saturation condition it is termed as vapour.

Vapour is in gaseous condition but it does not follow the gas laws. Its specific heats will
vary significantly. Moderate changes in temperature may change its phase to the liquid state.

When the temperature is well above the saturation temperature, vapour begins to behave
as a gas. It will also obey the characteristic equation for gases. Then the specific heat will be
nearly constant.

The characteristic equation for gases can be derived from Boyle’s law and Charles’ law. Boyle’s
law states that at constant temperature the volume of a gas body will vary inversely with
pressure. Charles’ law states that at constant pressure, the temperature will vary inversely
with volume. Combining these two, the characteristic equation for a system containing m kg of
a gas can be obtained as

PV = mRT (1.7.1)

This equation when applied to a given system leads to the relation 1.7.2 applicable for
all equilibrium conditions irrespective of the process between the states.

(P1V1/T1) = (P2V2/T2) = (P3 V3/T3) = (PV/T) = Constant (1.7.2)

In the SI system, the units to be used in the equation are Pressure, P → N/m2, volume,
V → m3, mass, m → kg, temperature, T → K and gas constant, R → Nm/kgK or J/kgK (Note: K
= (273 + °C), J = Nm).

This equation defines the equilibrium state for any gas body. For a specified gas body
with mass m, if two properties like P, V are specified then the third property T is automatically
specified by this equation. The equation can also be written as,

 Pv = RT (1.7.3)

where v = V/m or specific volume. The value for R for air is 287 J/kgK.

Application of Avagadro’s hypothesis leads to the definition of a new volume measure
called molal volume. This is the volume occupied by the molecular mass of any gas at standard
temperature and pressure. This volume as per the above hypothesis will be the same for all
gases at any given temperature and pressure. Denoting this volume as Vm and the pressure as
P and the temperature as T,

For a gas a,  PVm = Ma Ra T (1.7.4)

For a gas b,  PVm = Mb Rb T (1.7.5)

As P, T and Vm are the same in both cases.

MaRa = MbRb = M ××××× R = Constant (1.7.6)

The product M ××××× R is called Universal gas constant and is denoted by the symbol R.
Its numerical value in SI system is 8314 J/kg mole K. For any gas the value of gas constant R
is obtained by dividing universal gas constant by the molecular mass in kg of that gas. The gas
constant R for any gas (in the SI system, J/kg K) can be calculated using,

R = 8314/M (1.7.7)

1.7 CHARACTERISTIC EQUATION FOR GASES
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The characteristic equation for gases can be applied for all gases with slight
approximations, and for practical calculations this equation is used in all cases.

Example 1.2. A balloon is filled with 6 kg of hydrogen at 2 bar and 20°C. What will be the
diameter of the balloon when it reaches an altitude where the pressure and temperature are 0.2
bar and –60° C. Assume that the pressure and temperature inside are the same as that at the outside
at this altitude.

The characteristic equation for gases PV = mRT is used to calculate the initial volume,

 V1 = [(m RT1)/P1], For hydrogen, molecular mass = 2, and so

RH = 8314/2 = 4157 J/kgK, ∴ V1 = 6 × 4157 × (273 + 20)/2 × 105 = 36.54 m3

Using the general gas equation the volume after the balloon has reached the altitude, V2 is
calculated. [(P1V1)/T1] = [(P2V2)/T2]

[(2 × 105 × 36.54)/(273+20)] = [(0.2) × 105 × V2)/(273 – 60)] solving,

  V2 =  265.63 m3, Considering the shape of the balloon as a sphere of radius r,

Volume = (4/3) π r3  = 265.63 m3, solving

Radius, r = 3.99 m and diameter of the balloon = 7.98 m

(The pressure inside the balloon should be slightly higher to overcome the stress in the wall
material)

1.8 VISCOSITY

A fluid is defined as a material which will continue to deform with the application of a shear
force. However, different fluids deform at different rates when the same shear stress (force/
area) is applied.

Viscosity is that property of a real fluid by virtue of which it offers resistance
to shear force. Referring to Fig. 1.8.1, it may be noted that a force is required to move one
layer of  fluid over another.

For a given fluid the force required varies directly as the rate of deformation. As the
rate of deformation increases the force required also increases. This is shown in Fig. 1.8.1 (i).

The force required to cause the same rate of movement depends on the nature of the
fluid. The resistance offered for the same rate of deformation varies directly as the viscosity of
the fluid. As viscosity increases the force required to cause the same rate of deformation
increases. This is shown in Fig. 1.8.1 (ii).

Newton’s law of viscosity states that the shear force to be applied for a deformation rate
of (du/dy) over an area A is given by,

F = µ µ µ µ µ A (du/dy) (1.8.1)

or  (F/A) = τ τ τ τ τ =  µ µ µ µ µ (du/dy) = µ µ µ µ µ (u/y) (1.8.2)

where F is the applied force in N, A is area in m2, du/dy is the velocity gradient (or rate of
deformation), 1/s, perpendicular to flow direction, here assumed linear, and µ is the
proportionality constant defined as the dynamic or absolute viscosity of the fluid.
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Figure 1.8.1 Concept of viscosity

The dimensions for dynamic viscosity µ  can be obtained from the definition as Ns/m2 or
kg/ms. The first dimension set is more advantageously used in engineering problems. However,
if the dimension of N is substituted, then the second dimension set, more popularly used by
scientists can be obtained. The numerical value in both cases will be the same.

 N = kg m/s2 ; µ = (kg m/s2) (s/m2) = kg/ms

The popular unit for viscosity is Poise named in honour of Poiseuille.

Poise = 0.1 Ns/m2 (1.8.3)

Centipoise (cP) is also used more frequently as,

cP = 0.001 Ns/m2 (1.8.3a)

For water the viscosity at 20°C is nearly 1 cP. The ratio of dynamic viscosity to the
density is defined as kinematic viscosity, ν, having a dimension of m2/s. Later it will be seen to
relate to momentum transfer. Because of this kinematic viscosity is also called momentum
diffusivity. The popular unit used is stokes (in honour of the scientist Stokes). Centistoke is
also often used.

 1 stoke = 1 cm2/s = 10–4  m2/s (1.8.3b)

Of all the fluid properties, viscosity plays a very important role in fluid flow problems.
The velocity distribution in flow, the flow resistance etc. are directly controlled by viscosity. In
the study of fluid statics (i.e., when fluid is at rest), viscosity and shear force are not generally
involved. In this chapter problems are worked assuming linear variation of velocity in the
fluid filling the clearance space between surfaces with relative movement.

Example 1.3. The space between two large inclined parallel planes is 6mm and is filled with a
fluid. The planes are inclined at 30° to the horizontal. A small thin square plate of 100 mm side
slides freely down parallel and midway between the inclined planes with a constant velocity of 3 m/
s due to its weight of 2N. Determine the viscosity of the fluid.

The vertical force of 2 N due to the weight of the plate can be resolved along and perpendicular to
the inclined plane. The force along the inclined plane is equal to the drag force on both sides of the
plane due to the viscosity of the oil.

Force due to the weight of the sliding plane along the direction of motion

= 2 sin 30 = 1N
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Viscous force, F = (A × 2) × µ × (du/dy) (both sides of plate). Substituting the values,

1 = µ ×  [(0.1 × 0.1 × 2)] × [(3 – 0)/6/(2 × 1000)}]

Solving for viscosity, µ µ µ µ µ = 0.05 Ns/m2 or 0.5 Poise

30°

30°2 N

Sliding plate
100 mm sq.

Oil 6 mm gap

2 sin 30 N

30°

2 N

Figure Ex. 1.3

Example 1.4. The velocity of the fluid filling a hollow cylinder of radius 0.1 m varies as u = 10 [1
– (r/0.1)2] m/s along the radius r. The viscosity of the fluid is 0.018 Ns/m2. For 2 m length of the
cylinder, determine the shear stress and shear force over cylindrical layers of fluid at r =
0 (centre line), 0.02, 0.04, 0.06 0.08 and 0.1 m (wall surface.)

Shear stress = µ (du/dy) or µ (du/dr), u = 10 [1 – (r/0.1)2] m/s

∴   du/dr = 10  (– 2r/0.12 ) = – 2000 r

The – ve sign indicates that the force acts in a direction opposite to the direction of velocity, u.
Shear stress = 0.018 ×  2000 r = 36 rN/m2

Shear force over 2 m length = shear stress × area over 2m

 = 36r × 2πrL = 72 πr2 × 2 = 144 πr2

The  calculated values are tabulated below:

Radius, m Shear stress, N/m2 Shear force, N Velocity, m/s

0.00 0.00 0.00 0.00

0.02 0.72 0.18 9.60

0.04 1.44 0.72 8.40

0.06 2.16 1.63 6.40

0.08 2.88 2.90 3.60

0.10 3.60 4.52 0.00

Example 1.5. The 8 mm gap between two large vertical parallel plane surfaces is filled with a
liquid of dynamic viscosity 2 × 10–2  Ns/m2. A thin sheet of 1 mm thickness and 150 mm × 150 mm
size, when dropped vertically between the two plates attains a steady velocity of 4 m/s. Determine
weight of the plate. Assume that the plate moves centrally.

F = τ (A × 2) = µ × (du/dy) (A × 2) = weight of the plate.

Substituting the values, dy = [(8 – 1)/(2 × 1000)] m and du = 4 m/s

F = 2 × 10–2 [4/{(8 – 1)/(2 × 1000)}] [0.15 × 0.15 × 2] = 1.02 N  (weight of the plate)
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Example 1.6. Determine the resistance offered to the downward sliding  of a shaft of 400
mm dia and 0.1 m length by the oil film between the shaft and a bearing of ID 402 mm. The
kinematic viscosity is 2.4 × 10–4 m2/s and density is 900 kg/m3. The shaft is to move centrally and
axially at a constant velocity of 0.1 m/s.

Force, F opposing the movement of the shaft = shear stress × area

F = µ (du/dy) ( π × D × L )

µ  =  2.4 × 10–4 × 900 Ns/m2, du = 0.1 m/s, L = 0.1 m, D= 0.4 m

 dy = (402 – 400)/(2 × 1000)m, Substituting,

F = 2.4 × 10–4 × 900 × {(0.1 – 0)/[(402 – 400)/ (2 × 1000)]} ( π × 0.4 × 0.1) = 2714 N

1.8.1 Newtonian and Non Newtonian Fluids
An ideal fluid has zero viscosity. Shear force is not involved in its deformation. An ideal fluid
has to be also incompressible. Shear stress is zero irrespective of the value of du/dy. Bernoulli
equation can be used to analyse the flow.

Real fluids having viscosity are divided into two groups namely Newtonian and non
Newtonian fluids. In Newtonian fluids a linear relationship exists between the magnitude of
the applied shear stress and the resulting rate of deformation. It means that the proportionality
parameter (in equation 1.8.2, τ = µ (du/dy)), viscosity, µ is constant in the case of Newtonian
fluids (other conditions and parameters remaining the same). The viscosity at any given
temperature and pressure is constant for a Newtonian fluid and is independent of the rate of
deformation. The characteristics is shown plotted in Fig. 1.8.2. Two different plots are  shown
as different authors use different representations.
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Shear
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Figure 1.8.2 Rheological behaviour of fluids

Non Newtonian fluids can be further classified as simple non Newtonian, ideal plastic
and shear thinning, shear thickening and real plastic fluids. In non Newtonian fluids the
viscosity will vary with variation in the rate of deformation. Linear relationship between shear
stress and rate of deformation (du/dy) does not exist. In plastics, up to a certain value of applied
shear stress there is no flow. After this limit it has a constant viscosity at any given temperature.
In shear thickening materials, the viscosity will increase with (du/dy) deformation rate. In
shear thinning materials viscosity will decrease with du/dy. Paint, tooth paste, printers ink
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are some examples for different behaviours. These are also shown in Fig. 1.8.2. Many other
behaviours have been observed which are more specialised in nature. The main topic of study
in this text will involve only Newtonian fluids.

1.8.2 Viscosity and Momentum Transfer
In the flow of liquids and gases molecules are free to move from one layer to another. When the
velocity in the layers are different as in viscous flow, the molecules moving from the layer at
lower speed to the layer at higher speed have to be accelerated. Similarly the molecules moving
from the layer at higher velocity to a layer at a lower velocity carry with them a higher value
of momentum and these are to be slowed down. Thus the molecules diffusing across layers
transport a net momentum introducing a shear stress between the layers. The force will be
zero if both layers move at the same speed or if the fluid is at rest.

When cohesive forces exist between atoms or molecules these forces have to be overcome,
for relative motion between layers. A shear force is to be exerted to cause fluids to flow.

Viscous forces can be considered as the sum of these two, namely, the force due to
momentum transfer and the force for overcoming cohesion. In the case of liquids, the viscous
forces are due more to the breaking of cohesive forces than due to momentum transfer (as
molecular velocities are low). In the case of gases viscous forces are more due to momentum
transfer as distance between molecules is larger and velocities are higher.

1.8.3 Effect of Temperature on Viscosity
When temperature increases the distance between molecules increases and the cohesive force
decreases. So, viscosity of liquids decrease when temperature increases.

In the case of gases, the contribution to viscosity is more due to momentum transfer. As
temperature increases, more molecules cross over with higher momentum differences. Hence,
in the case of gases, viscosity increases with temperature.

1.8.4 Significance of Kinematic Viscosity
Kinematic viscosity,  ν = µ/ρ , The unit in SI system is m2/s.

 (Ns/m2) (m3/ kg) = [(kg.m/s2) (s/m2)] [m3/kg] = m2/s

Popularly used unit is stoke (cm2/s) = 10–4 m2/s named in honour of Stokes.

Centi stoke is also popular = 10–6 m2/s.

Kinematic viscosity represents momentum diffusivity. It may be explained by modifying
equation 1.8.2

τττττ = µµµµµ (du/dy) = (µµµµµ/ρρρρρ) × {d (ρρρρρu/dy)} =  ν ν ν ν ν × {d (ρρρρρu/dy)} (1.8.4)

d (ρu/dy) represents momentum flux in the y direction.

So, (µ/ρ) = ν kinematic viscosity gives the rate of momentum flux or momentum diffusivity.

With increase in temperature kinematic viscosity decreases in the case of liquids and
increases in the case of gases. For liquids and gases absolute (dynamic) viscosity is not influenced
significantly by pressure. But kinematic viscosity of gases is influenced by pressure due to
change in density. In gas flow it is better to use absolute viscosity and density, rather than
tabulated values of kinematic viscosity, which is usually for 1 atm.
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1.8.5 Measurement of Viscosity of Fluids

1.8.5.1 Using Flow Through Orifices
In viscosity determination using Saybolt or Redwood viscometers, the time for the flow through
a standard orifice, of a fixed quantity of the liquid kept in a cup of specified dimensions is
measured in seconds and the viscosity is expressed as Saybolt seconds or Redwood seconds.
The time is converted to poise by empirical equations. These are the popular instruments for
industrial use. The procedure is simple and a quick assessment is possible. However for design
purposes viscosity should be expressed in the standard units of Ns/m2.

1.8.5.2 Rotating Cylinder Method
The  fluid is filled in the interspace between two cylinders. The outer cylinder is rotated keeping
the inner cylinder stationary and the reaction torque on the inner cylinder is measured using
a torsion spring. Knowing the length, diameter, film thickness, rpm and the torque, the value
of viscosity can be calculated. Refer Example 1.7.

Example 1.7. In a test set up as in figure to measure viscosity, the cylinder supported by a torsion
spring is 20 cm in dia and 20 cm long. A sleeve surrounding the cylinder rotates at 900 rpm and the
torque measured is 0.2 Nm. If the film thickness between the cylinder and sleeve is 0.15 mm,
determine the viscosity of the oil.

The total torque is given by the sum of the torque due to
the shear forces on the cylindrical surface and that on the
bottom surface.

Torque due to shear on the cylindrical surface (eqn 1.9.1a),
Ts = µπ2 NLR3/15 h,

Torque on bottom surface (eqn 1.9.3),
Tb = µπ2 NR4/60 h

Where h is the clearance between the sleeve and cylinder and also base and bottom. In this case
both are assumed to be equal. Total torque is the sum of values given by the above equations. In
case the clearances are different then h1 and h2 should be used.

Total torque = (µ π2NR3/ 15.h) {L + (R/4)}, substituting,

0.2 = [(µ × π2 900 × 0.13)/(15 × 0.0015)] × [0.2 + (0.1/4)]

Solving for viscosity,   µ  µ  µ  µ  µ = 0.00225 Ns/m2 or 2.25 cP.

This situation is similar to that in a Foot Step bearing.

1.8.5.3 Capillary Tube Method
The time for the flow of a given quantity under a constant head (pressure) through a tube of
known diameter d, and length L is measured or the pressure causing flow is maintained constant
and the flow rate is measured.

Figure Ex. 1.7 Viscosity test setup

0.15 200200 20
0

900 rpm
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 ∆P = (32 µµµµµ VL)/d2 (1.8.5)

This equation is known as Hagen-Poiseuille equation. The viscosity can be calculated
using the flow rate and the diameter. Volume flow per second, Q = ( π d2/4) V. Q is experimentally
measured using the apparatus. The head causing flow is known. Hence µ can be calculated.

1.8.5.4 Falling Sphere Method
A small polished steel ball is allowed to fall freely through the liquid column. The ball will
reach a uniform velocity after some distance. At this condition, gravity force will equal the
viscous drag. The velocity is measured by timing a constant distance of fall.

µ µ µ µ µ = 2r2g (ρρρρρ1     – ρ ρ ρ ρ ρ2)/9V (1.8.6)

(µ will be in poise. 1 poise = 0.1 Ns/m2)

where r is the radius of the ball, V is the terminal velocity (constant velocity), ρ1 and  ρ2 are the
densities of the ball and the liquid. This equation is known as Stokes equation.

Example 1.8. Oil flows at the rate of 3 l/s through a pipe of 50 mm diameter. The pressure difference
across a length of 15 m of the pipe is 6 kPa. Determine the viscosity of oil flowing through the
pipe.

Using Hagen-Poiesuille equation-1.8.5 , ∆P = (32 µuL)/d2

u  = Q/(πd2/4) = 3 × 10–3/(π × 0.052/4) = 1.53 m/s

µ  = ∆ P × d2/32uL = (6000 × 0.052)/(32 × 1.53 × 15) = 0.0204 Ns m2

Example 1.9. A steel ball of 2 mm dia and density 8000 kg/m3 dropped into a column of oil of
specific gravity 0.80 attains a terminal velocity of 2mm/s. Determine the viscosity of the oil.
Using Stokes equation, 1.8.6

   µ = 2r2g (ρ1 – ρ2)/9u

= 2 × (0.002/2)2 × 9.81 × (8000 – 800)/(9 × 0.002) = 7.85 Ns/m2.

1.9 APPLICATION OF VISCOSITY CONCEPT

1.9.1 Viscous Torque and Power—Rotating Shafts
Refer Figure 1.9.1

Shear stress, τ  = µ (du/dy) = µ (u/y), as linearity is assumed

u = π DN/60, y = h, clearance in m

τ = µ (πDN/60h), Tangential force = τ × A, A = πDL

Torque,  T = tangential force × D/2 =µ (πDN/60h) (πDL) (D/2)

substituting T = µ π2NLD3/ 120 h (1.9.1)

If radius is used, T = µπ2NLR3/15 h (1.9.1a)

As power,  P = 2πNT/60,

 P = µπ3N2LR3/450 h (1.9.2)

For equations 1.9.1 and 1.9.2, proper units are listed below:

L, R, D, h should be in meter and N in rpm. Viscosity µ should be in Ns/m2 (or Pas). The
torque will be obtained in Nm and the power calculated will be in W.

13



VED

P-2\D:\N-fluid\Fld1-1.pm5

Bearing sleeve Oil of viscosity m

N rpm

L

h

h

D

Figure 1.9.1 Rotating Shaft in Bearing

Note: Clearance h is also the oil film thickness in bearings. End effects are neglected. Linear
velocity variation is assumed. Axial location is assumed.

Example  1.10. Determine the power required to run a 300 mm dia shaft at 400 rpm in journals
with uniform oil thickness of 1 mm. Two bearings of 300 mm width are used to support the shaft.
The dynamic viscosity of oil is 0.03 Pas. (Pas = (N/m2) × s).

Shear stress on the shaft surface = τ = µ (du/dy) = µ(u/y)

u = π DN/60 = π × 0.3 × 400/60 = 6.28 m/s

τ = 0.03 {(6.28 – 0)/ 0.001} = 188.4 N/m2

Surface  area of the two bearings, A = 2 π DL

Force on shaft surface = τ × A = 188.4 × (2 × π × 0.3 × 0.3) = 106.6 N

Torque = 106.6 × 0.15 = 15.995 Nm

Power required = 2 π NT/60 = 2 × π × 400 × 15.995/60 = 670 W.

(check using eqn. 1.9.2, P = µ π3 N2LR3/450 h = 669.74 W)

1.9.2 Viscous Torque—Disk Rotating Over a Parallel Plate
Refer Figure 1.9.2.

Consider an annular strip of radius r and width dr  shown in Figure 1.9.2. The force on
the strip is given by,

F = Aµ (du/dy) = A µ (u/y)

(as y is small linear velocity variation can be assumed)

 u = 2 πrN/60, y = h, A = 2πr dr

Torque = Force × radius, substituting the above values

torque dT on the strip is, dT = 2πr dr µ(2πrN/60h)r

dT = 2πr.dr.µ. 2πrN.r/60.h = [µπ2N/15.h]r3dr

14
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N rpm

Oil, Viscosity m

Plate

r dr

Q

h

Figure 1.9.2 Rotating disk

Integrating the expression from centre to edge i.e., 0 to R,

 T = µπµπµπµπµπ2NR4/60 h (1.9.3)

If diameter is used, R4 = (1/16)D4

 T = µπµπµπµπµπ2ND4/960 h (1.9.3a)

The power required,  P = 2πNT/60

P = µπµπµπµπµπ3N2R4/1800 h (1.9.4)

use R in metre, N in rpm and µ in Ns/m2 or Pa s.

For an annular area like a collar the integration limits are Ro and Ri and the torque is
given by

 T = µπµπµπµπµπ2N(Ro
4 – Ri

4)/60 h (1.9.5)

Power,  P = µπµπµπµπµπ3N2(Ro
4 – Ri

4)/1800 h (1.9.6)

Example 1.11. Determine the oil film thickness
between the plates of a collar bearing of 0.2 m ID and 0.3 m
OD transmitting power, if 50 W was required to overcome
viscous friction while running at 700 rpm. The oil used has
a viscosity of 30 cP.

Power = 2πNT/60 W, substituting the given values,

50 = 2π × 700 × T/60, Solving torque,

T = 0.682 Nm

This is a situation where an annular surface rotates over
a flat surface. Hence, using equation 1.9.5, Torque, T = µπ2N (RO

4
 – Ri

4)/60.h

µ = 30 cP = 30 × .0001 Ns/m2, substituting the values,

 0.682 = (30 × 0.0001) × π2 × 700 × (0.154 – 0.14)/60 × h

∴ h = 0.000206m = 0.206 mm

CollarOil film

Figure Ex. 1.11
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1.9.3 Viscous Torque—Cone in a Conical Support
Considering a small element between radius r and r + dr, as shown in figure 1.9.3. The surface
width of the element in contact with oil is

 dx = dr/sin θ
The surface area should be calculated with respect to centre O as shown in figure—the

point where the normal to the surface meets the axis—or the centre of rotation, the length OA
being r/cos θ.

Hence contact surface area = 2πr.dr/sin θ.cos θ.

N rpm

O r/cos q

Aq dx

dr

q

dxq
R1

dr r

A
h

R, R2

Figure 1.9.3 Rotating cone or conical bearing

The velocity along the surface is (2πrN/60).cos θ and the film thickness is h.
F = Aµ (du/dy) = {(2πr./sin θ.cos θ)} µ(2πrN.cos θ/60) (1/h)

 F = (π2µNr2dr)/(15.h.sin θ), Torque = F.r
Torque on element, dT = π2µNr2dr.r/15.h.sin θ = (πµN/15 h sin θ)r3 dr
Integrating between r = 0 and r = R

 T = πππππ2 µµµµµNR4/60.h sin θθθθθ (1.9.7)
Using µ in Ns/m2, h and R in metre the torque will be in N.m. When semicone angle

θ = 90°, this reduces to the expression for the disk—equation 1.9.3. For contact only between
R1 and R2.

 T = µπµπµπµπµπ2 N(R2
4 – R1

4)/60.h. sin θθθθθ (1.9.8)
Power required, P = 2πππππNT/60 = µµµµµ3N2[R2

4 – R1
4]/1800 h sin θθθθθ (1.9.9)

Exmaple 1.12. Determine the power required to overcome viscous
friction for a shaft running at 700 rpm fitted with a conical bearing. The
inner and outer radius of the conical bearing are 0.3 m and 0.5 m. The
height of the cone is 0.3 m. The 1.5 mm uniform clearance between the
bearing and support is filled with oil of viscosity 0.02 Ns/m2.

Equation 1.9.8 is applicable in this case.

 tan θ = (0.5 – 0.3)/0.3 = 0.667, ∴ θ = 34°

 T = π2µ N (Ro
4 – Ri

4)/ 60. h.sin θ, substituting the values

Figure Ex. 1.12

0.3 m

0.5 m

0.3 m0.3 m 34°
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 T = π2 × 0.03 × 700 × (0.54 – 0.34)/60 × 0.0015 × sin 34 = 149.36 Nm
Power required = 2πNT/60 = 2π × 700 × 149.36/60 = 10948 W

Check using equation 1.9.9 also,

 P = µ  × π3 × 7002 × [0.54 – 0.34]/ [1800 × 0.0015 × sin 34] = 10948 W.
Note the high value of viscosity

1.10 SURFACE TENSION

Many of us would have seen the demonstration of a needle being supported on water surface
without it being wetted. This is due to the surface tension of water.

All liquids exhibit a free surface known as meniscus when in contact with vapour or gas.
Liquid molecules exhibit cohesive forces binding them with each other. The molecules below
the surface are generally free to move within the liquid and they move at random. When they
reach the surface they reach a dead end in the sense that no molecules are present in great
numbers above the surface to attract or pull them out of the surface. So they stop and return
back into the liquid. A thin layer of few atomic thickness at the surface formed by the cohesive
bond between atoms slows down and sends back the molecules reaching the surface. This
cohesive bond exhibits a tensile strength for the surface layer and this is known as surface
tension. Force is found necessary to stretch the surface.

Surface tension may also be defined as the work in Nm/m2 or N/m required to create
unit surface of the liquid. The work is actually required for pulling up the molecules with
lower energy from below, to form the surface.

Another definition for surface tension is the force required to keep unit length of the
surface film in equilibrium (N/m). The formation of bubbles, droplets and free jets are due to
the surface tension of the liquid.

1.10.1 Surface Tension Effect on Solid-Liquid Interface
In liquids cohesive forces between molecules lead to surface tension. The formation of droplets
is a direct effect of this phenomenon. So also the formation of a free jet, when liquid flows out
of an orifice or opening like a tap. The pressure inside the droplets or jet is higher due to the
surface tension.

Wall

Wall
Liquid
surface

Adhesive
forces
higher

b

Liquid droplet

Real fluids Wetting Non wetting

Point contactSpreads

b

Adhesive
forces
lower

Liquid surface

Figure 1.10.1 Surface tension effect at solid-liquid interface
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Liquids also exhibit adhesive forces when they come in contact with other solid or liquid
surfaces. At the interface this leads to the liquid surface being moved up or down forming a
curved surface. When the adhesive forces are higher the contact surface is lifted up forming a
concave surface. Oils, water etc. exhibit such behaviour. These are said to be surface wetting.
When the adhesive forces are lower, the contact surface is lowered at the interface and a
convex surface results as in the case of mercury. Such liquids are called nonwetting. These are
shown in Fig. 1.10.1.

The angle of contact “β” defines the concavity or convexity of the liquid surface. It can be
shown that if the surface tension at the solid liquid interface (due to adhesive forces) is σs1 and
if the surface tension in the liquid (due to cohesive forces) is σ11 then

cos βββββ = [(2σσσσσs1/σσσσσ11) – 1] (1.10.1)

At the surface this contact angle will be maintained due to molecular equilibrium. The
result of this phenomenon is capillary action at the solid liquid interface. The curved surface
creates a pressure differential across the free surface and causes the liquid level to be raised or
lowered until static equilibrium is reached.

Example 1.13.  Determine the surface tension acting on the surface of a vertical thin plate of
1m length when it is lifted vertically from a liquid using a force of 0.3N.

Two contact lines form at the surface and hence, Force = 2 × 1 × Surface tension

0.3 = 2 × 1 × Surface tension. Solving, Surface tension, σ σ σ σ σ = 0.15 N/m.

1.10.2 Capillary Rise or Depression
Refer Figure 1.10.2.

Let D be the diameter of the tube and β is the contact angle. The surface tension forces
acting around the circumference of the tube = π × D × σ.

The vertical component of this force = π × D × σ × cos β
This is balanced by the fluid column of height, h, the specific weight of liquid being γ.
Equating, h × γ × A = π × D × σ cos β, A = πD2/4 and so

h = (4π × × × × × D × σ × × σ × × σ × × σ × × σ × cos βββββ)/(γπγπγπγπγπD2) = (4σ ×σ ×σ ×σ ×σ × cos βββββ)/ρρρρρgD (1.10.2)

(i) (ii)

s sb

h

D

b < 90°

s s b > 90°
D

b

h

Liquid
level

Figure 1.10.2 Surface tension, (i) capillary rise (ii) depression
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This equation provides the means for calculating the capillary rise or depression. The
sign of cos β depending on β > 90 or otherwise determines the capillary rise or depression.

 Example 1.14. Determine the capillary depression of mercury in a 2 mm ID glass tube. Assume
 σ = 0.5 N/m and β = 130°.

Specific weight of mercury, γ = 13600 × 9.81 N/m3

Using eqn. 1.10.2, h = (4 σ × cosβ)/ρg/D

= (4 × 0.5 × cos130)/(13600 × 9.81 × 0.002)

= – 4.82 × 10–3 m = – 4.82 mm

Example1.15. In a closed end single tube manometer, the height of mercury column above the
mercury well shows 757 mm against the atmospheric pressure. The ID of the tube is 2 mm. The
contact angle is 135°. Determine the actual height representing the atmospheric pressure if
surface tension is 0.48 N/m. The space above the column may be considered as vacuum.

Actual height of mercury column = Mercury column height + Capillary depression

Specific weight of mercury = ρg = 13600 × 9.81 N/m3

Capillary depression,  h = (4 σ × cosβ)/γD

= (4 × 0.48 × cos135)/(0.002  × 13600 × 9.81)

= – 5.09 × 10–3m = – 5.09 mm (depression)

Corrected height of mercury column = 757 + 5.09 = 762.09 mm

1.10.3 Pressure Difference Caused by Surface Tension on a Doubly Curved
  Surface

Consider the small doubly curved element with radius r1 and included angle dφ in one direction
and radius r2  and dθ in the perpendicular direction referred to the normal at its center.

For equilibrium the components of the surface tension forces along the normal should
be equal to the pressure difference.

The sides are r1 dφ and  r2 dθ long. Components are σr1 sin (dθ/2) from θ direction sides
and σr2 sin (dφ/2) from the φ direction sides.

2σr1dφ sin(dθ/2) + 2σr2 dθ sin (dφ/2) = (pi – po)r1r2 dθdφ

r d1 fs

r d1 f
dq

df

r d2 qs

r d2 q

r d2 qs
r d1 fs

R1

R2

Saddle surface
P dA = P r d r do o 1 2f q

Figure 1.10.3 Pressure difference, doubly curved surface
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For small values of angles, sin θ = θ, in radians. Cancelling the common terms

 σ [r1 + r2] = (pi – po) × r1r2. Rearranging, (1.10.3)

(pi – po) = [(1/r1) + (1/r2)] × σ
For a spherical surface, r1 = r2 = R

So,  (pi – po) = 2σ/R (1.10.4)

where R is the radius of the sphere.

For cylindrical shapes one radius is infinite, and so

 (pi – po) = σ/R (1.10.4a)

These equations give the pressure difference between inside and outside of droplets and
free jets of liquids due to surface tension. The pressure inside air bubbles will be higher compared
to the outside pressure. The pressure inside a free jet will be higher compared to the outside.

The pressure difference can be made zero for a doubly curved surface if the curvature is
like that of a saddle (one positive and the other negative). This situation can be seen in the jet
formed in tap flow where internal pressure cannot be maintained.

1.10.4 Pressure Inside a Droplet and a Free Jet
Refer Figure 1.10.4.

s s

2 RL P =D 2 Ls

s s

R

L

s s

R

D Õ sP R = 2 R
2

Õ

Figure 1.10.4 Surface tension effects on bubbles and free jets

Considering the sphere as two halves or hemispheres of diameter D and considering the
equilibrium of these halves,

Pressure forces = Surface tension forces, (pi – po)(πD2/4) = σ × π × D

(pi – po) = 4(σσσσσ/D) = 2(σσσσσ/R) (1.10.5)

Considering a cylinder of length L and diameter D and considering its equilibrium,
taking two halves of the cylinder.

pressure force = DL(pi – po), surface tension force = 2σL

(pi – po) = 2 (σ/D) = (σ/R) (1.10.6)
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Example 1.16. Determine the pressure difference across a nozzle if diesel is sprayed through it
with an average diameter of 0.03mm. The surface tension is 0.04N/m.
The spray is of cylindrical shape

P = σ/R = 0.04/(0.03 × 10–3/2) = 2666.67 N/m2 = 2.67 kpa

Example 1.17. Calculate the surface tension if the pressure difference between the inside and
outside of a soap bubble of 3mm dia is 18 N/m2.

Referring equation 1.10.5, ∆ P = 4σ/D
Surface tension,  σ = ∆P × D/4 = 18 × (0.003/4) = 0.0135 N/m

1.11 COMPRESSIBILITY AND BULK MODULUS

Bulk modulus, Ev is defined as the ratio of the change in pressure to the rate of change of
volume due to the change in pressure. It can also be expressed in terms of change of density.

Ev = – dp/(dv/v) = dp/(dρρρρρ/ρρρρρ) (1.11.1)

where dp is the change in pressure causing a change in volume dv when the original volume
was v. The unit is the same as that of pressure, obviously. Note that dv/v = – dρ/ρ.

The negative sign indicates that if dp is positive then dv is negative and vice versa, so
that the bulk modulus is always positive (N/m2). The symbol used in this text for bulk modulus
is Ev (K is more popularly used).

This definition can be applied to liquids as such, without any modifications. In the case
of gases, the value of compressibility will depend on the process law for the change of volume
and will be different for different processes.

The bulk modulus for liquids depends on both pressure and temperature. The value
increases with pressure as dv will be lower at higher pressures for the same value of dp. With
temperature the bulk modulus of liquids generally increases, reaches a maximum and then
decreases. For water the maximum is at about 50°C. The value is in the range of 2000 MN/m2

or 2000 × 106 N/m2 or about 20,000 atm. Bulk modulus influences the velocity of sound in the
medium, which equals (go × Ev/ρ)0.5.

Example 1.18. Determine the bulk modulus of  a liquid whose volume decreases by 4% for an
increase in pressure of 500 × 105 pa. Also determine the velocity of sound in the medium if the
density is 1000 kg/m3.

Bulk modulus is defined as Ev = – dp/(dv/v), substituting the values,

Ev = (– 500 × 105)/(–4/100) = 1.25 × 109 N/m2

Velocity of sound c is defined as = (go × Ev
 /ρ)0.5

∴  c = [1 × 1.25 × 109/100]0.05 = 1118 m/s.

Example 1.19. The pressure of water in a power press cylinder is released from 990 bar to 1 bar
isothermally. If the average value of bulk modulus for water in this range is 2430 × 106 N/m2. What
will be the percentage increase in specific volume?

The definition of bulk modulus, Ev = – dp/(dv/v) is used to obtain the solution. Macroscopically the
above equation can be modified as

 Ev = – {P1 – P2}{(v2 – v1)/v1}, Rearranging,
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Change in specific volume = (v2 – v1)/v1 = – (P2 – P1)/Ev

= (990 × 105 – 1 × 105)/2430 × 106 = 0.0407

% change in specific volume = 4.07%

Example 1.20. Density of sea water at the surface was measured as 1040 kg/m3 at an atmospheric
pressure of 1 bar. At certain depth in water, the density was found to be 1055 kg/m3. Determine
the pressure at that point. The bulk modulus is 2290 × 106 N/m2.

Bulk modulus, Ev = – dp/(dv/v) = – (P2 – P1 )/ [(v2 – v1)v1]

As  v = 1/ρ, – (P2 – P1) = Ev × [{1/ρ2) – (1/ρ1)}/(1/ρ1)]

= Ev × [(ρ1– ρ2)/ρ2]

P2 = P1 – Ev × [(ρ1– ρ2)/ρ2] = 1 ×105 – 2290 × 106 {(1040 – 1055)/1055}

= 32.659 × 106 N/m2 or about 326.59 bar.

1.11.1 Expressions for the Compressibility of Gases
The expression for compressibility of gases for different processes can be obtained using the
definition, namely, compressibility = – dp/(dv/v). In the case of gases the variation of volume,
dv, with variation in pressure, dp, will depend on the process used. The relationship between
these can be obtained using the characteristic gas equation and the equation describing the
process.

Process equation for gases can be written in the following general form
Pvn  = constant (1.11.2)

where n can take values from 0 to ∞. If n = 0, then P = constant or the process is a constant
pressure process. If n = ∞, then v = constant and the process is constant volume process. These
are not of immediate interest in calculating compressibility. If dp = 0, compressibility is zero
and if dv = 0, compressibility is infinite.

The processes of practical interest are for values of n = 1 to n = cp/cv (the ratio of specific
heats, denoted as k). The value n = 1 means Pv = constant or isothermal process and n = cp/cv
= k means isentropic process.

Using the equation Pvn = constant and differentiating the same,
nPv(n–1)dv + vndp = 0 (1.11.3)

rearranging and using the definition of Ev,
Ev = – dp/(dv/v) = n ×  P (1.11.4)

Hence compressibility of gas varies as the product n × P.
For isothermal process, n = 1, compressibility = P.
For isentropic process, compressibility = k × P.
For constant pressure and constant volume processes compressibility values are zero

and ∞ respectively.
In the case of gases the velocity of propagation of sound is assumed to be isentropic.

From the definition of velocity of sound as [go × Ev/ρ]0.5 it can be shown that
c = [go × k P/ρ]0.5 = [go × k × R × T]0.5 (1.11.5)

It may be noted that for a given gas the velocity of sound depends only on the temperature.
As an exercise the velocity of sound at 27°C for air, oxygen, nitrogen and hydrogen may be
calculated as 347.6 m/s, 330.3 m/s, 353.1 m/s and 1321.3 m/s.
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1.12 VAPOUR PRESSURE

Liquids exhibit a free surface in the container whereas vapours and gases fill the full volume.
Liquid molecules have higher cohesive forces and are bound to each other. In the gaseous state
the binding forces are minimal.

Molecules constantly escape out of a liquid surface and an equal number constantly
enter the surface when there is no energy addition. The number of molecules escaping from
the surface or re-entering will depend upon the temperature.

Under equilibrium conditions these molecules above the free surface exert a certain
pressure. This pressure is known as vapour pressure corresponding to the temperature. As the
temperature increases, more molecules will leave and re-enter the surface and so the vapour
pressure increases with temperature. All liquids exhibit this phenomenon. Sublimating solids
also exhibit this phenomenon.

The vapour pressure is also known as saturation pressure corresponding to the
temperature. The temperature corresponding to the pressure is known as saturation
temperature. If liquid is in contact with vapour both will be at the same temperature and
under this condition these phases will be in equilibrium unless energy transaction takes place.

The vapour pressure data for water and refrigerants are available in tabular form. The
vapour pressure increases with the temperature. For all liquids there exists a pressure above
which there is no observable difference between the two phases. This pressure is known as
critical pressure. Liquid will begin to boil if the pressure falls to the level of vapour pressure
corresponding to that temperature. Such boiling leads to the phenomenon known as cavitation
in pumps and turbines. In pumps it is usually at the suction side and in turbines it is usually
at the exit end.

1.12.1 Partial Pressure
In a mixture of gases the total pressure P will equal the sum of pressures exerted by each of
the components if that component alone occupies the full volume at that temperature. The
pressure exerted by each component is known as its partial pressure.

 P = p1 +p2 + p3 + .... (1.12.1)

where p1 = (m1R1T)/V ; p2 =  (m2R2T)/V in which T and V are the common temperature and
volume.

For example air is a mixture of various gases as well as some water vapour. The
atmospheric pressure is nothing but the sum of the pressures exerted by each of these
components. Of special interest in this case is the partial pressure of water vapour. This topic
is studied under Psychrometry. The various properties like specific heat, gas constant etc. of
the mixture can be determined from the composition.

cm = Σ (ci × mi)/Σ mi (1.12.2)

where cm is the specific heat of the mixture and ci and  mi are the specific heat and the mass of
component i in the mixture.
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SOLVED PROBLEMS

Problem 1.1. A liquid with kinematic viscosity of 3 centi stokes and specific weight
9 kN/m3 fills the space between a large stationary plate and a parallel plate of 475 mm square,
the film thickness being 1 mm. If the smaller plate is to be pulled with uniform velocity of
4 m/s,  determine the force required if the liquid film is maintained all through.

The force required (eqn 1.8.2), τ × A = A × µ × (du/dy), where τ is shear stress, and µ is
dynamic viscosity. In this problem kinematic viscosity and specific weight are given.

Stoke = 10–4 m2/s. Density = specific weight/g. So, µ = 0.03 × 10–4 × 9000/9.81 Ns/m2

Force = [0.03 ×  10–4 × 9000/9.81] × (4.0/0.001) ×  0.475 × 0.475 = 2.484 N.

Problem 1.2.  A small thin plane surface is pulled through the liquid filled space between
two large horizontal planes in the parallel direction. Show that the force required will be
minimum if the plate is located midway between the planes.

Let the velocity of the small plane be u, and the
distance between the large planes be h.

Let the small plane be located at a distance of  y
from the bottom plane. Assume linear variation of velocity
and unit area. Refer Fig. P 1.2.

Velocity gradient on the bottom surface = u/y

Velocity gradient on the top surface = u/(h – y),

Considering unit area,

Force on the bottom surface = µ × (u/y), Force on the top surface = µ × u/(h – y)

Total force to pull the plane = µ × u × {(1/y) + [1/(h – y)]} ...(A)

To obtain the condition for minimisation of the force the variation of force with respect
to y should be zero, or dF/dy = 0, Differentiating the expression A,

dF/dy = µ × u {(–1/y2) + [1/(h – y)2]}, Equating to zero

y2 = (h – y)2 or y = h/2

or the plane should be located at the mid gap position for the force to be minimum.

The force required for different location of the plate is calculated using the following
data and tabulated below.

µ  = 0.014 Ns/m2 , u = 5 m/s, h = 0.1 m.

Equation A is used in the calculation.

Model calculation is given for y = 0.002 m.

 F = 0.014 × 5 × {(1/0.002) + [1/0.01 – 0.002)]} = 43.75 N/m2

Note that the minimum occurs at mid position

Distance, y mm 2 3 4 5 6

Force, N/m2 43.75 33.33 29.17 28.00 29.17

h
h – y

y

Figure P.1.2 Problem model
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Problem 1.3.  A small plane is pulled along the centre plane of the oil filled space
between two large horizontal planes with a velocity u and the force was  measured as F. The
viscosity of the oil was µ1. If a lighter oil of viscosity µ2 fills the gap what should be the location
of the plate for the force to be the same when pulled with the same velocity u.

If the plane is located centrally in the case where the oil is lighter the force will be
smaller.

So the plane should now be located away from the central plane. Let it be located at a
distance, y from the lower plane as shown in Fig. P1.2 :

Case 1: The velocity gradient is equal on both sides = u/(h/2) = 2 × u/h

Total force = µ1 × {(2u/h) + (2u/h)} = 4 × µµµµµ1 × u/h

Case 2: Velocity gradient on the top surface = u/(h–y)

Velocity gradient on the bottom surface = u/y

Total force = µ2 × u × {(1/y) + [1/(h – y)]} = µ2 × u × {h/[y × (h – y)]}

Equating and solving, (µ2/µ1) = 4 × y × (h – y)/h2 = 4[y/h] × [1 – (y/h)]

Solve for (y/h). A  quadratic equation.

Problem 1.4. A large thin plate is pulled through a narrow gap filled with a fluid of
viscosity µ on the upper side and a fluid of viscosity cµ on the lower side. Derive an expression
for the location of the plate in the gap for the total force to be minimum.

The force will not be minimum if the plate is centrally located as the viscosity are not
equal. Let the plate be located at a distance of y from the lower surface on the side where the
viscosity is cµ. Let the gap size be h, the total force for unit area will be

F = cµ × (u/y) + µ × u/(h – y) = µ × u {(c/y) + [1/(h – y)]}

At the minimum conditions the slope i.e., the derivative dF/dy should be zero.

 dF/dy = µ × u {[1/(h – y)2] – [c/y2]}, Equating to zero yields, y2 = c × (h – y)2

Taking the root,

c  × (h – y) = y or y = (h × c )/(1 + c ) = h/[1 + (1/ c )]

Consider the following values for the variables and calculate the force for different
locations of the plate.

u = 5 m/s, µ = 0.014 N/m2 , h = 4 mm and c = 0.49 or c  = 0.7

For optimum conditions

y = (0.004 × 0.7)/(1 + 0.7) = 0.001647 m

Using F = 5 ×  0.014 ×  {(0.49/y) + [1/(0.004 – y)]}, the force for various locations is
calculated and tabulated below:

y, mm 1.0 1.5 1.65 2.0 2.5

Force, N/m2 57.63 50.87 50.58 52.15 60.39
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Problem 1.5. A hydraulic lift shaft of 450 mm dia moves in a cylinder of 451 mm dia
with the length of engagement of 3 m. The interface is filled with oil of kinematic viscosity of
2.4 × 10–4  m2/s and density of 900 kg/m3. Determine the uniform velocity of movement of the
shaft if the drag resistance was 300 N.

The force can be determined assuming that the sliding is between the developed surfaces,
the area being π × D × L, µ = ρv = 2.4 × 10–4 × 900 = 0.216 Ns/m2,

Clearance = (Do – Di)/2 = 0.5 mm. Using equations 1.8.1 and 1.8.2

Drag resistance = 300 = µ × 0.45 × 3 × 0.216 × (u/0.0005)

Solving for u, velocity = 0.16374 m/s.

Problem 1.6. A shaft of 145 mm dia runs in journals with a uniform oil film thickness
of 0.5 mm. Two bearings of 20 cm width are used. The viscosity of the oil is 19 cP. Determine
the speed if the power absorbed is 15 W.

The equation that can be used is, 1.9.2 i.e., (n is used to denote rpm)

 P = [µπ3n2LR3/450 h]

The solution can be obtained from basics also. Adopting the second method,

 τ = µ (du/dy) = µ (u/y), µ = 19 cP = 0.019 Ns/m2,

y = 0.5 mm = 0.0005 m, let the rpm be n

u = π Dn/60 = π × 0.145 × n/60 = 7.592 × 10–3 × n

τ  = 0.019 (7.592 × 10–3 × n/0.0005) = 0.2885 × n N/m2,

A = 2 × π DL = 0.182 m2, Force F = A × τ = 0.2885 × n × 0.182 = 0.0525 × n,

Torque = force × radius,

 T = 0.0525 × n × 0.145/2 = 3.806 × 10–3 × n Nm

Power, P = 2πnT/60 = 15 = 2 × π × n 3.806 × 10–3 × n/60

Solving, speed, n = 194 rpm. (Check using the equation 1.9.2)

 15 = [0.019 × π3 × n2 (2 × 0.20) × 0.07253/ (450 × 0.0005)]

Solving speed,  n = 194 rpm.

Problem 1.7. A circular disc of 0.3 m dia rotates over a large stationary plate with 1 mm
thick fluid film between them. Determine the viscosity of the fluid if the torque required to
rotate the disc at 300 rpm was 0.1 Nm.

The equation to be used is 1.9.3, (n denoting rpm)

 Torque T = (µ × π2 × n × R4)/(60 × h), (h – clearance),

n = 300 rpm, R = 0.15 m, h = 0.001 m, Substituting the values,

 0.1 = µ × π2 × 300 × 0.154/ (60 × 0.001), Solving for µ
Viscosity µ µ µ µ µ = 4 × 10–3 Ns/m2 or 4 cP.

(care should be taken to use radius value, check from basics.)

Problem 1.8. Determine the viscous drag torque and power absorbed on one surface
of a collar bearing of 0.2 m ID and 0.3 m OD with an oil film thickness of 1 mm and a viscosity
of 30 cP if it rotates at 500 rpm.
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The equation applicable is 1.9.5. T = µ × π2 × n × (R
o
4 – R

i
4)/60 × h

µ  = 30 × 0.001 Ns/m2, n = 500 rpm, R
o 
= 0.15 m, R

i
 = 0.1 m, h = 0.002 m

substituting the values

T = 30 × 0.001 ×  π2 × 500 × {0.154 – 0.14}/{(60 × 0.002)} = 0.5012 Nm

P = 2πnT/60 = 2 × π × 500 × 0.5012/60 = 26.243 W.

Problem 1.9. A conical bearing of outer radius 0.5 m and inner radius 0.3 m and height
0.2  m runs on a conical support with a uniform clearance between surfaces. Oil with viscosity
of 30 cP is used. The support is rotated at 500 rpm. Determine the clearance if the power
required was 1500 W.

The angle θ is determined using the difference in radius and
the length.

 tan θ = (0.5 – 0.3)/0.2 = 1.0; So θ = 45°.

Using equation 1.9.9 i.e.,

 P = π3 × µ × n2 × (R
2
4 – R

1
4)/1800 × h × sin θ

(µ = 30 cP = 0.03 Ns/m2, n = 500 rpm, R
2
 = 0.5 m, R

1
 = 0.3 m)

1500 = π3 × 0.03 × 5002 × (0.54 – 0.34)/1800 × h × sin 45°

Solving for clearance, h = 6.626 × 10–3  m or 6.63 mm

Problem 1.10. If the variation of velocity with distance from the surface, y is given by u
= 10 y0.5 whre u is in m/s and y is in m in a flow field up to y = 0.08 m, determine the wall
shear stress and the shear stress at y = 0.04 and 0.08 m from the surface.

 u = 10y0.5, (du/dy) = 5/y0.5.

The substitution y = 0 in the above will give division by zero error. It has to be
approximated as (u

2 
– u

1
)/(y

2
 – y

1
) for near zero values of y.

Considering layers y = 0 and y =10–6, the velocities are 0.0 and 0.01 m/s

(using u = 10 y0.5), the difference in y value is 10–6.

So  (u
2 

– u
1
)/(y

2
 – y

1
) = 0.01/10–6  = 10000,

At the wall, (du/dy) = 10000, τ = µ (du/dy) = 10000 × µ µ µ µ µ
At  y = 0.04, (du/dy) = 5/0.040.5 = 25, τ = 25 × µ µ µ µ µ
At  y = 0.08, (du/dy) = 5/0.080.5 = 17.68, τ = 17.68 × µ µ µ µ µ
In this case the clearance considered is large and so the assumption of linear velocity

variation may lead to larger error. The concept that the torque along the radius should be
constant can be used to determine the torque more accurately.

Problem 1.11. A hollow cylinder of 12 cm ID filled with fluid of viscosity 14 cP rotates
at 600 rpm. A shaft of diameter 4 cm is placed centrally inside. Determine the shear stress on
the shaft wall.

The hollow cylinder rotates while the shaft is stationary. Shear stress is first calculated
at the hollow cylinder wall (Assume 1 m length).

Solution is obtained from basics. Linear velocity variation is assumed. Clearance,

 h = 0.04 m, µ = 14 × 0.001= 0.014 N/m2

0.5 m

45°

0.3 m
0.2 m
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At the inside wall of the hollow cylinder,

 u = 2 πRn/60 = 3.77 m/s

(du/dr) = u/h = 3.77/0.04 = 94.25/s, τ = µ (du/dr)

= 0.014 × 94.25 = 1.32 N/m2

 F = π × D × L × τ = π × 0.12 × 1 × 1.31 = 0.498 N

 torque = F × R = 0.498 × 0.06 = 29.86 × 10–3 Nm

Torque at all radii should be the same. At mid radius R = 0.04 m, the velocity gradient is
obtained by using this concept.

29.86 10–3 = 
du
dr 0 04.

 × 0.014 × π × 0.08 × 1 × 0.04,

Solving,  
du
dr 0 04.

 = 212.06/s,

This can be checked using equation, (see problem 1.13)

du
dr

du
drR R1 2

=  × (R2
2/R1

2) at 0.04, 
du
dr 0 04.

  × 25 × 0.062/0.042 = 212.06/s

The velocity gradient at the shaft surface = 94.25 × 0.062/0.022 = 848.25/s

Shear stress at the shaft wall = 848.25 × 0.014 = 11.88 N/m2.

Problem 1.12. The velocity along the radius of a pipe of 0.1 m radius varies as u = 10 ×
[1 – (r/0.1)2] m/s. The viscosity of the fluid is 0.02 Ns/m2 . Determine the shear stress and the
shear force over the surface at r = 0.05 and r = 0.1 m.

τ = µ (du/dr), u = 10 × [1 – (r/0.1)2],

du/dr = – 10 × (2 × r/0.12) = – 2000 r

(the –ve sign indicates that the force acts opposite to the flow direction.)

τ = 0.02 × (– 2000) × r = – 40 r, Shear force F = 2πrLτ, Considering L = 1

At r = 0.05, τ     = – 2 N/m2, F = 0.628 N

At r = 0.1, τ = – 4 N/m2, F = 2.513 N.

Problem 1.13. A sleeve surrounds a shaft with the space between them filled with a
fluid. Assuming that when the sleeve rotates velocity gradient exists only at the sleeve surface
and when the shaft rotates velocity gradient exists only at the shaft surface, determine the ratio
of these velocity gradients.

The torque required for the rotation will be the same in both cases. Using general
notations,

    τ
i 
[2π r

i 
×

 
L] × r

i 
= τ

o
 [2π r

o 
× L] × r

o

 τ
i 
= µ (du/dr)

ri
, τ

o
 = µ (du/dr)

ro

Substituting in the previous expression and solving

(du/dr)
i 
= (du/dr)

o
 × [r

o
2/r

i
2]
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This will plot as a second degree curve. When the gap is large % error will be high if
linear variation is assumed.

Problem 1.14. Derive an expression for the force required for axial movement of a shaft
through a taper bearing as shown in figure. The diameter of the shaft is D m and the length is
L m. The clearance at the ends are t

1
m

  
and t

2
m. The oil has a viscosity of µ and  the shaft moves

axially at a velocity u.

In this case the clearance varies along the length and so the velocity gradient will vary
along the length. Hence the shear stress also will vary along the length. The total force required
can be determined by integrating the elemental force over a differential length dX. The
clearance, t at location X is obtained, assuming t1 > t2,

 t = t
1 

–
 
(t

1
 – t

2
) × (X/L) = {(t

1
 × L) – (t

1 
– t

2
) X}/L

du/dy = u/t = u × L/{(t
1 

× L) – (t
1
 – t

2
) × X}

The velocity gradient at this location is u/t, assumed linear.

 τ = µ (du/dy), dF = τ dA = τ × π × D × dX, substituting

dF = [{L × µ × u × π × D}] × [dX/{(t
1 

×
 
L) – (t

1 
– t

2
) × X}]

Integrating between the limits X = 0 to X = L

F = [{π π π π π × D ×     u × L × µ µ µ µ µ}/{t1 – t2}] ×     [ln(t1/t2)]

t1 t2

dXX

L

Figure P.1.14

Problem 1.15. The clearance between the shaft of 100 mm dia and the bearing varies
from 0.2 mm to 0.1 mm over a length of 0.3 m. The viscosity of the oil filling the clearance is
4.8 × 10–2 Ns/m2. The axial velocity of the shaft is 0.6 m/s. Determine the force required.

Using the equation derived in the previous problem as given below and substituting the
values F = [{π × D × u × L × µ}/{t

1
– t

2
}] [ln(t

1
/t

2
)]

 F = [{π × 0.1 × 0.6 × 0.3 × 4.8 × 10–2}/{0.0002 – 0.0001}] × [ln(0.0002/0.0001)] = 18.814 N

If the clearance was uniform, F = π × D × L × u × µ/t

For t = 0.2 mm, F
0.2

 = 13.572 N, For t = 0.1 mm, F
0.1 

= 27.143 N

The arithmetic average is 20.36 N, while the logarithmic average is what is determined
in this problem, 18.814 N.
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Problem 1.16. Derive an expression for the torque required to overcome the viscous
resistance when a circular shaft of diameter D rotating at N rpm in a bearing with the clearance
t varying uniformly from t

1
 m at one end to t

2
m at the other end. The distance between the ends

is L m. The oil has a viscosity of  µ.

In this case the clearance varies along the length and so the velocity gradient (du/dr)
will vary along the length. Hence the shear stress and the torque also will vary along the
length. The total torque required can be determined by integrating the elemental torque over
a differential length dX.

The clearance, t at location X is obtained, assuming t
1 

> t
2 

,

 t = t
1 

–  (t
1 

– t
2
) × (X/L) = {(t

1 
× L) – (t

1 
– t

2
) × X}/L

The velocity gradient at this location X is u/t, as linear profile is assumed.

∴    du/dy = u/t = u × L/{(t
1 

× 
 
L) – (t

1
 – t

2
) × X}

 τ = µ (du/dy), dF = τ dA = τ × π × D × dX,  substituting

 dF = [{L × µ × u × π × D}] × [dX/{(t
1 

× L) – (t
1 

– t
2
) × X}]

Torque = dF × (d/2) and u = (π DN)/60. Substituting and Integrating between the limits

X = 0 to X = L, Torque = [{πππππ2 × D3 × L × N × µ µ µ µ µ}/ {120(t1 – t2)}] ×     [ln (t1/t2)]

Power = 2πNT/60, hence

P = [{πππππ3 × D3 × L × N2 × µ µ µ µ µ}/{3600(t1 –t2)}] × [ln (t1/t2)].

Problem 1.17 The clearance between the shaft of 100 mm dia and the bearing varies
from 0.2 mm to 0.1 mm over a length of 0.3 m. The viscosity of the oil filling the clearance is
7.1 × 10–2  Pa.s (Ns/m2). The shaft runs at 600 rpm. Determine the torque and power
required.

Using the equations derived in the previous problem as given below and substituting
the values T = [{π2 × D3 × L × N × µ}/{120(t

1
 – t

2
)}] × [ln(t

1
/t

2
)]

P = [{π3 × D3 × L × N2 × µ}/{3600(t
1
 – t

2
)}] × [ln(t

1
/t

2
)]

T = [{π2 × 0.13 × 0.3 × 600 × 7.1 × 10–2}/{120(0.0002 – 0.0001)}]

× [ln (0.0002/0.0001)]

= 7.29 Nm.

P = [{π3 × 0.13 × 0.3 × 6002 × 7.1 × 10–2}/{3600(0.0002 – 0.0001)}]

× [ln (0.0002/0.0001)]

= 457.8 W.

Check: P = 2π × 600 × 7.29/60 = 458W.

Problem 1.18. Determine the capillary depression of mercury in a 4 mm ID glass
tube. Assume surface tension as 0.45 N/m and β =115°.

The specific weight of mercury = 13550 × 9.81 N/m3, Equating the surface force and the
pressure force, [h × γ × πD2/4] = [π × D × σ × cos β], Solving for h,

h = {4 × σ × cos β}/{γ × D} = [4 × 0.45 × cos 115]/[13550 × 9.81 × 0.004]

= – 1.431 × 10–3 m or – 1.431 mm, (depression)
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Problem 1.19. A ring 200 mm mean dia is to be separated from water surface as shown
in figure. The force required at the time of separation was 0.1005 N. Determine the surface
tension of water.

A A

200 mm

0.1005 N

Figure P.1.19

The total length of contact just before lifting from the surface will be twice the
circumference or 2πD. The force will equal the product of surface tension and the length of
contact.

 σ × 2 × π × 0.2 = 0.1005 N. Solving σ σ σ σ σ = 0.08 N/m

The surface tension of a liquid can be measured using this principle provided the fluid
wets the surface.

Problem 1.20.  A thin plate 1 m wide is slowly lifted vertically from a liquid with a
surface tension of 0.1 N/m. Determine what force will be required to overcome the surface tension.
Assume β = 0.

The total length of contact just before separation from the surface will be twice the
width of the plate or 2L. The force will equal the product of surface tension and the length of
contact.

F = 2 × 1 × 0.1 = 0.02 N.

Problem 1.21. Diesel injection nozzle sprays fuel with an average diameter of 0.0254 mm.
The surface tension is 0.0365 N/m. Determine the pressure difference between the inside and
outside of the nozzle. Also determine the pressure difference if the droplet size is reduced to 10
µm.

A droplet forms at the mouth of the nozzle. The pressure inside the droplet will be
higher compared to that at outside.

The equation applicable is (P
i
 – P

o
) = 2σ/R.

So (P
i 
–

 
P

o
) = {2 × 0.0365 × 2}/{0.0254 × 10–3} = 5748 N/m2  = 5.748 kN/m2

When the droplet size is reduced to 10 µm the pressure difference is

 (P
i
 – P

o
) = {2 × 0.0365 × 2}/{10 × 10–6} = 14600 N/m2 = 14.6 kN/m2.

Problem 1.22. A glass tube of 8 mm ID is immersed in a liquid at 20°C. The specific
weight of the liquid is 20601 N/m3. The contact angle is 60°. Surface tension is 0.15 N/m.
Calculate the capillary rise and also the radius of curvature of the meniscus.
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Capillary rise, h = {4 × σ × cos β}/{γ × D} = {4 × 0.15 × cos 60}/{20601 × 0.008}

= 1.82      × 10–3 m or 1.82 mm.

The meniscus is a doubly curved surface with equal radius as the section is circular.

(using equation 1.10.3)

(P
i 
–

 
P

o
) = σ × {(1/R

1
) + (1/R

2
)} = 2 σ/R

 R = 2σ/(P
i 
– P

o
), (P

i
 – P

o
) = specific weight × h

So,  R = [2 × 0.15]/ [1.82 × 10–3 × 2060] = 8 × 10–3 m or 8 mm.

Problem 1.23. A mercury column is used to measure the atmospheric pressure. The
height of column above the mercury well surface is 762 mm. The tube is 3 mm in dia. The
contact angle is 140°. Determine the true pressure in mm of mercury if surface tension is
0.51 N/m. The space above the column may be considered as vacuum.

In this case capillary depression is involved and so the true pressure = mercury column +
capillary depression.

The specific weight of mercury = 13550 × 9.81 N/m3, equating forces,

 [h × γ × π D2/4] = [π × D × σ × cos β].

So h = {4 × σ × cos β}/{γ × D}

h = (4 × 0.51) × cos 140]/[13550 × 9.81 × 0.003]

= – 3.92 × 10–3 m or – 3.92 mm, (depression)

Hence actual pressure indicated = 762 + 3.92 = 765.92 mm of mercury.

Problem 1.24. Calculate the pressure difference between the inside and outside of a
soap bubble of 2.5 mm dia if the surface tension is 0.022 N/m.

The pressure difference in the case of a sphere is given by, equation 1.10.5

(Pi  – Po) = 2σ/R = {2 × 0.022}/{0.0025} = 17.5 N/m2.

Problem 1.25. A hollow cylinder of 150 mm OD with its weight equal to the buoyant
forces is to be kept floating  vertically in a liquid with a surface tension of 0.45 N/m2. The
contact angle is 60°. Determine the additional force required due to surface tension.

In this case a capillary rise will occur and this requires an additional force to keep the
cylinder floating.

Capillary rise,   h = {4 × σ × cos β}/{γ × D}.

As  (Pi – Po) =  h × specific weight, (Pi – Po) = {4 × σ × cos β}/D

 (Pi – Po) = {4 × 0.45 × cos 60}/{0.15} = 6.0 N/m2

Force = Area × (Pi – Po) = {π × 0.0152/4} × 6 = 0.106 N

As the immersion leads to additional buoyant force the force required to kept the cylinder
floating will be double this value.

So the additional force = 2 × 0.106 = 0.212 N.

Problem 1.26. The volume of liquid in a rigid piston—cylinder arrangement is 2000 cc.
Initially the pressure is 10 bar. The piston diameter is 100 mm. Determine the distance through
which the piston has to move so that the pressure will increase to 200 bar. The temperature
remains constant. The average value of bulk modulus for the liquid is 2430 × 10–6 N/m2.
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By definition—refer eqn 1.11.1

 Ev  = – dP/(dv/v) = – (P2 – P1)/[(v2 – v1)/v1]

So 2430 × 106 = –190 × 105/(dv/0.002), Solving,

 dv = – 0.002 × 190 × 105/2430 × 106 = 15.64 × 10–6 m3

Piston movement, L = dv/area

 L = dv × 4/πD2 = 15.64 × 10–6 × 4/π  × 0.12 = 1.991 × 10–3 m = 1.991 mm

(the piston-cylinder arrangement is assumed to be rigid so that there is no expansion of the
container)

Problem 1.27. The pressure of water increases with depth in the ocean. At the surface,
the density was measured as 1015 kg/m3. The atmospheric pressure is 1.01 bar. At a certain
depth, the pressure is 880 bar. Determine the density of sea water at the depth. The average
value of bulk modulus is 2330 × 106 N/m2.

The density will increase due to the pressure increase.

Bulk modulus is defined in eqn 1.11.1 as Ev = – dP/(dv/v) = – (P2 – P1)/[v2 – v1)/v1],

[(v2 – v1)/v1] = – (P2 – P1)/Ev = – [880 × 105 – 1.01 × 105]/2330 × 106 = –0.03772

v1 = 1/1015 m3/kg, substituting the values in

v2 = [v1 × {– (P2 – P1)/Ev}] + v1,

v2 = [– 0.03772 × (1/1015)] + (1/1015) = 9.48059 × 10–4  m3/kg

 Density = 1/(9.48059 ×  10–4 m3/kg) = 1054.79 kg/m3 an increase of 4%.

The density increases by 4.0% due to the increase in pressure.

[(v2 – v1)/v1] also equals [(ρ1 – ρ2)/ρ2] = [(P2 – P1)/Ev]

Use of this equation should also give the same answer.

Problem 1.28.  A diesel fuel pump of 10 mm ID is to deliver against a pressure of
200 bar. The fuel volume in the barrel at the time of closure is 1.5 cc. Assuming rigid barrel
determine the plunger movement before delivery begins. The bulk modulus of the fuel is 1100 ×
106  N/m2.

By definition—eqn 1.11.1—the bulk modulus is Ev = – dP/(dv/v),

1100 × 106 = – 200 × 105/(dv/1.5 × 10–6), Solving dv = – 2.77 × 10–8  m3

Plunger movement = dv/area  = – 2.77 × 10–8 × 4/( π × 0.00152)

 = 3.47 × 10–4 m = 0.347 mm

(the pressure rise will also be affected by the expansion of the pipe line).
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In chapter five flow of ideal fluids was discussed. The main idea was the study of flow pattern.
The determination of equal flow paths and equal potential lines was discussed. No attempt
was made to determine the numerical value of these quantities.

In this chapter the method of determination of the various energy levels at different
locations in the flow is discussed. In this process first the various forms of energy in the fluid
are identified. Applying the law of conservation of energy the velocity, pressure and potential
at various locations in the flow are calculated. Initially the study is limited to ideal flow. However
the modifications required to apply the analysis to real fluid flows are identified.

The material discussed in this chapter are applicable to many real life fluid flow problems.
The laws presented are the basis for the design of fluid flow systems.

Energy consideration in fluid flow:

Consider a small element of fluid in flow field. The energy in the element as it moves in
the flow field is conserved. This principle of conservation of energy is used in the determination
of flow parameters like  pressure, velocity and potential energy at various locations in a flow.
The concept is used in the analysis of flow of ideal as well as real fluids.

Energy can neither be created nor destroyed. It is possible that one form of energy is
converted to another form. The total energy of a fluid element is thus conserved under usual
flow conditions.

If a stream line is considered, it can be stated that the total energy of a fluid element at
any location on the stream line has the same magnitude.

Energy associated with a fluid element may exist in several forms. These are listed here and
the method of calculation of their numerical values is also indicated.

2.0 INTRODUCTION

2.1 FORMS OF ENERGY ENCOUNTERED IN FLUID FLOW

Chapter-2 Bernoulli Equation and 
Applications
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This is the energy due to the motion of the element as a whole. If the velocity is V, then
the kinetic energy for m kg is given by

KE = 
mV

go

2

2

The unit in the SI system will be Nm also called Joule (J)

{(kg m2/s2)/(kg m/N s2)}

KE = 
V
go

2

2

In fluid flow studies, it is found desirable to express the energy as the head of fluid in m.
This unit can be obtained by multiplying equation (6.1.1) by go/g.

 Kinetic head = 
V
g

g
g

V
go

o
2 2

2 2
=

The unit for this expression will be 
m s

s m

2 2

2  = m

Apparantly the unit appears as metre, but in reality it is Nm/N, where the denominator
is weight of the fluid in N.

The equation in this form is used at several places particularly in flow of liquids. But the
energy associated physically is given directly only be equation 6.1.1.

The learner should be familiar with both forms of the equation and should be able to
choose and use the proper equation as the situation demands. When different forms of the
energy of a fluid element is summed up to obtain the total energy, all forms should
be in the same unit.

This energy is due to the position of the element in the gravitational field. While a zero
value for KE is possible, the value of potential energy is relative to a chosen datum. The value
of potential energy is given by

PE = mZ g/go

Where m is the mass of the element in kg, Z is the distance from the datum along the
gravitational direction, in m. The unit will be (kg m m/s2) × (Ns2/kgm) i.e., Nm. The specific
potential energy (per kg) is obtained by dividing equation 6.1.3 by the mass of the element.

PE = Z g/g0

This gives the physical quantity of energy associated with 1 kg due to the position of the
fluid element in the gravitational field above the datum. As in the case of the kinetic energy,
the value of PE also is expressed as head of fluid, Z.

PE = Z (g/go) (go

2.1.1 Kinetic Energy

2.1.2 Potential Energy

 Nm (2.1.1)

The same referred to one kg (specific kinetic energy) can be obtained by dividing 2.1.1
by the mass m and then the unit will be Nm/kg.

, Nm/kg (2.1.1b)

 Nm (2.1.3)

 Nm/kg (2.1.3. b)

/g) = Z m. (2.1.4)
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This form will be used in equations, but as in the case of KE, one should be familiar with
both the forms and choose the suitable form as the situation demands.

Area – A
Fluid element

1

1
L

P1

Control volume

2

2

1
A, distance to be moved = L, work done = P1AL = P1 mv as AL = volume = mass × specific
volume, v. ∴ flow work = P mv.

Note:
N

m
m
kg

Nm
kg2

3
→

As in the other cases, the flow energy can also expressed as head of fluid.

 FE = 
P g

g
o

As specific weight γ = ρ g/go

It is important that in any equation, when energy quantities are summed up consistent
forms of these set of equations should be used, that is, all the terms should be expressed either
as head of fluid or as energy (J) per kg. These are the three forms of energy encountered more
often in flow of incompressible fluids.

This is due to the thermal condition of the fluid. This form is encountered in compressible
fluid flow. For gases (above a datum temperature) IE = cv T where T  is the temperature above
the datum temperature and cv is the specific heat of the gas at constant volume. The unit for
internal energy is J/kg (Nm/kg). When friction is significant other forms of energy is converted
to internal energy both in the case of compressible and incompressible flow.

2.1.3 Pressure Energy (Also Equals Flow Energy)

2.1.4 Internal Energy

Figure 2.1.1 Flow work calculation

The boundary of the element of fluid considered is shown by the dotted line, Force = P

The element when entering the control volume has to flow against the pressure at that
location. The work done can be calculated referring Fig. 2.1.1.

The pressure energy per kg can be calculated using m = 1. The flow energy is given by

 FE = P.v = P/ρ, Nm/kg (2.1.5)

, m (2.1.5a)
ρ

, the equation is written as,

FE = P/γ, m (2.1.5b)
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These are not generally met with in the study of flow of fluids. However in magnetic
pumps and in magneto hydrodynamic generators where plasma flow in encountered, electrical
and magnetic energy should also be taken into account.

Under ideal conditions of flow, if one observes the movement of a fluid element along a stream
line, the sum of these forms of energy will be found to remain constant. However, there may be
an increase or decrease of one form of energy while the energy in the other forms will decrease
or increase by the same amount. For example when the level of the fluid decreases, it is possible
that the kinetic energy increases. When a liquid from a tank flows through a tap this is what
happens. In a diffuser, the velocity of fluid will decrease but the pressure will increase. In a
venturimeter, the pressure at the minimum area of cross section (throat) will be the lowest
while the velocity at this section will be the highest.

Consider a small element along the stream line, the direction being designated as s.

Stream line

Element
considered

s

dsds

dzdz

dA

r

q
P

V r g d s dA

P + . ds, V + . ds¶P
s¶

¶V
s¶

The net force on the element are the body forces and surface forces (pressure). These are
indicated in the figure. Summing this up, and equating to the change in momentum.

PdA – {P + (∂P/∂s} dA – ρg dA ds cos θ = ρ dA ds as

s is the acceleration along the s direction. This reduces to,

1
ρ

∂
∂
P
s  + g cos θ + as

The total energy of the element will however remain constant. In case friction is present,
a part of the energy will be converted to internal energy which should cause an increase in
temperature. But the fraction is usually small and the resulting temperature change will be so
small that it will be difficult for measurement. From the measurement of the other forms, it
will be possible to estimate the frictional loss by difference.

54

2.1.5 Electrical and Magnetic Energy

2.2 VARIATION IN THE RELATIVE VALUES OF VARIOUS FORMS OF
ENERGY DURING FLOW

2.3 EULER’S EQUATION OF MOTION FOR FLOW ALONG A STREAM
LINE

Figure 2.3.1 Euler’s equation of Motion – Derivation

(2.3.1)
where a

 = 0 (2.3.2)
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(Note: It will be desirable to add go to the first term for dimensional homogeneity. As it is, the
first term will have a unit of N/kg while the other two terms will have a unit of m/s2. Multiplying by go,
it will also have a unit of m/s2).

as = dV/dt, as velocity, V = f(s, t), (t = time).

dV = 
∂
∂

∂
∂

V
s

ds
V
t

dt+ dividing by dt,

dV
dt

V
s

ds
dt

V
t

= +∂
∂

∂
∂

As 
ds
dt

 = V,

and as cos θ = dz/ds, equation 6.3.2 reduces to,

1
ρ

∂
∂
P
s  + g

∂
∂
z
s

 +V
∂
∂

∂
∂

V
s

V
t

+

For steady flow ∂V/∂t = 0. Cancelling ∂s and using total derivatives in place of partials as
these are independent quantities.

dp
ρ

o.dp/ρ for dimensional homo-
geneity).

This equation after dividing by g, is also written as,

dp
γ  + d

V
g

2

2

F
HG

I
KJ  + dz = 0 or d

P V
g

z
γ

+ +
L
N
M

O
Q
P

2

2

which means that the quantity within the bracket remains constant along the flow.
This equation is known as Euler’s equation of motion. The assumptions involved are:
1. Steady flow
2. Motion along a stream line and
3. Ideal fluid (frictionless)
In the case on incompressible  flow, this equation can be integrated to obtain Bernoulli

equation.

dP
ρ

 + gdz + VdV = 0, as ρ = constant

 
P

gz
V

ρ
+ +

2

2
 = const. or 

P
z

g
g

V
gρ

+
F
HG

I
KJ +

0

2

0

The constant is to be evaluated by using  specified boundary conditions. The unit of the
terms will be energy unit (Nm/kg).

2.4 BERNOULLI EQUATION FOR FLUID FLOW

 = 0 (2.3.2. a)

 + gdz + VdV = 0 (2.3.3)

 = 0 (2.3.4)

Euler’s equation as given in 2.3.3 can be integrated directly if the flow is assumed to be
incompressible.

 = Constant (2.4.1)
2

(Note: in equation 2.3.3 also it is better to write the first term as g
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In SI units the numerical value of go = 1, kg m/N s2. Equation 6.4.1 can also be written
as to express energy as head of fluid column.

P
z

V
gγ

+ +
2

2

(γ is the specific weight N/m3). In this equation all the terms are in the unit of head of the fluid.

The constant has the same value along a stream line or a stream tube. The first term
represents (flow work) pressure energy, the second term the potential energy and the third
term the kinetic energy.

This equation is extensively used in practical design to estimate pressure/velocity in
flow through ducts, venturimeter, nozzle meter, orifice meter etc. In case energy is added or
taken out at any point in the flow, or loss of head due to friction occurs, the equations will read
as,

P V
g

z g
g

W
h g

g
P V

g
z g
go o

f

o o o

1 1
2

1 2 2
2

2

2 2ρ ρ
+ + + − = + +

where W is the energy added and hf is the loss of head due to friction.

In calculations using SI system of units go may be omitting as its value is unity.

 
P

z
V

gγ
+ +

2

2  = constant,

Taking the datum as section 1, the pressure P2 can be calculated.

V1 = 0.8 × 4/π × 0.62 = 2.83 m/s, V2 = 0.8 × 4/π × 0.33 = 11.32 m/s

P1 = 10 × 105 N/m2, γ = sp. gravity × 9810. Substituting.

10 10
9810 1.3

0
2.83

2 9.81
P

9810 1.3
1

11.32
2 9.81

5 2
2

2×
×

+ +
×

=
×

+ +
×

Solving, P2 = 9.092 bar (9.092 × 105 N/m2).

As P/γ is involved directly on both sides, gauge pressure or absolute pressure can be used without
error. However, it is desirable to use absolute pressure to avoid negative pressure values (or use of
the term vacuum pressure).

Using Bernoulli’s equation in the form,

 
P1
γ  + Z1 + 

V
g
1
2

2
 = 

P2
γ  + Z2 + 

V
g
2
2

2

 = constant (2.4.2)

Using Bernoulli equation in the following form (2.4.2)

Example 2.1  A liquid of specific gravity 1.3 flows in a pipe at a rate of 800 l/s, from point 1 to point
2 which is 1 m above point 1. The diameters at section 1 and 2 are 0.6 m and 0.3 m respectively. If
the pressure at section 1 is 10 bar, determine the pressure at section 2.

Example 2.2 Water flows through a horizontal venturimeter with diameters of 0.6 m and 0.2 m.
The guage pressure at the entry is 1 bar. Determine the flow rate when the throat pressure is 0.5
bar (vacuum). Barometric pressure is 1 bar.
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and noting  Z1 = Z2, P1 = 2 × 105 N/m2 (absolute)

 P2 = 0.5 ×105 N/m2 (absolute), γ = 9810 N/m3

 V1 = Q × 4/(π × 0.602) = 3.54 Q, V2 = Q × 4/(π × 0.202) = 31.83Q

2 10
9810

5×
 + 0 + 

3 54
2 9 81

2.
.×

Q2 = 
0 5 10

9810

5. ×
 + 0 +

3183
2 9 81

2 2.
.
Q

×

Solving, Q = 0.548 m3/s, V1 = 1.94 m/s, V2 = 17.43 m/s.

The pressure around the jet is atmospheric throughout. Taking the
tap outlet as point 1 and also taking it as the datum using Bernoulli
equation.

P
Z

V
g

P
Z

V
g

1
1

1
2

2
2

2
2

2 2γ γ
+ + = + + ,

 P1 = P2, Z2 = 0,

      Z2 = – 0.6 m, V1 = 2.6 m/s

∴  
2 6

2 9 81
0 6

2 9 81

2
2

2.
.

.
.×

= − +
×
V

∴ V2 = 4.3 m/s.

using continuity equation (one dimensional flow) and noting that density is constant.

  A1V1 = A2V2

π × 015
4

2
 × 2.6 = 

π × D2

4
 × 4.3, ∴ D = 0.01166 m or 11.66 mm

As the potential energy decreases, kinetic energy increases. As the velocity is higher the flow area
is smaller.

Entrainment of air may increase the diameter somewhat.

0.1 m f

Q = 0.1 m /s
3

0.6 m0.6 m

WaterWater

0.2 m f Mercury

A B
h

xm

1

2

0.6 m0.6 m

Jet

57

Figure Ex. 2.3 Problem model

Example 2.3 A tap discharges water evenly in a jet at a velocity of 2.6 m/s at the tap outlet, the
diameter of the jet at this point being 15 mm. The jet flows down vertically in a smooth stream.
Determine the velocity and the diameter  of the jet at 0.6 m below the tap outlet.

Example 2.4 Water flows in a tapering pipe  vertically as shown in Fig. Ex.6.4. Determine the
manometer reading ‘‘h’’. The manometer fluid has a specific gravity of 13.6. The flow rate is
100 l/s
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The velocities at sections 1 and 2 are first calculated.

 V1 = 4 × 0.1/ (π × 0.22) = 3.183 m/s,

      V2 = 4 × 0.1/ (π × 0.12) = 12.732 m/s

It is desired to determine P1 – P2. Rearranging Bernoulli equation for this flow,

P P1 2−
γ  = 0.6 + (12.7322 – 3.1832)/(2 × 9.81) = 8.346 m of water

For water γ  = 9810 N/m3. For the manometer configuration, considering the level AB and equating
the pressures at A and B

 
P1
γ  + x + h = 

P2
γ

 + 0.6 + x + sh

(where x, h are shown on the diagram and s is specific gravity)

∴  
P P1 2−

γ  = 0.6 + h(s – 1), substituting the values,

8.346 = 0.6 + h(13.6 – 1)

∴  h = 0.6148 m or 61.48 cm

The total energy plotted along the flow to some specified scale gives the energy line. When
losses (frictional) are negligible, the energy line will be horizontal or parallel to the flow direction.
For calculating the total energy kinetic, potential and flow (pressure) energy are considered.

Energy line is the plot of P
γ

 + Z + V
g

2

2
 along the flow. It is constant along the flow when losses

are negligible.

The plot of P
γ

 + Z  along the flow is called the

hydraulic gradient line. When velocity increases this will
dip and when velocity decreases this will rise. An
example of plot of these lines for flow from a tank through
a venturimeter is shown in Fig. 6.5.1.

The hydraulic gradient line provides useful
information about pressure variations (static head) in a
flow. The difference between the energy line and
hydraulic gradient line gives the value of dynamic head
(velocity head).

Tank Energy line

H.G. line

2.5 ENERGY LINE AND HYDRAULIC GRADIENT LINE

Figure 2.5.1 Energy and hydraulic
gradient lines
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A B
h

Datum

Z2

Z

A2P2

A1
P1 Z1

1

Q = 
A

A A
g

P P
Z Z2

2 1
2 0 5

1 2
1 2

0 5

1
2

−

− + −
F
HG

I
KJ

L
N
MM

O
Q
PP/

.

.

b g{ }
b g

γ

where suffix 1 and 2 refer to the inlet and the throat.

Refer to Fig. Ex. 6.5

Volume flow = A1 V1 = A2 V2

∴ V1 = 
A
A

2

1
V2, V1

2 = 
A
A

2

1

2F
HG

I
KJ . V2

2,

∴  (V2
2 – V1

2) = V2
2 1 2

1

2

−
F
HG

I
KJ

L

N
M
M

O

Q
P
P

A
A

Applying Bernoulli equation to the flow and considering section 1 and 2,

P
Z

V
g

P
Z

V
g

1
1

1
2

2
2

2
2

2 2γ γ
+ + = + +

Rearranging,

2 1 2
1 2

0 5

g
P P

Z Z
− + −

RST
UVW

L
N
MM

O
Q
PPγ

( )
.

 = V2 1 2

1

2 0 5

−
F
HG

I
KJ

L

N
M
M

O

Q
P
P

A
A

.

 V2 = 
1

1
2

2 1
2 0 5

1 2
1 2

0 5

[ ( / ) ]
( ).

.

−
−

+ −
RST

UVW
L
N
MM

O
Q
PPA A

g
P P

Z Z
γ

∴ Volume flow is

A2V2 = 
A

A A
g

P P
Z Z2

2 1
2 0 5

1 2
1 2

0 5

1
2

[ ( / ) ]
( ).

.

−
− + −

RST
UVW

L
N
MM

O
Q
PPγ

This is a general expression and can be used irrespective of
the flow direction, inclination from horizontal or vertical
position. This equation is applicable for orifice meters and
nozzle flow meters also.

In numerical work consistent units should be used.

Pressure should be in N/m2, Z in m, A in m2 and then volume
flow will be m3/s.

A coeficient is involved in actual meters due to friction.

2.6 VOLUME FLOW THROUGH A VENTURIMETER

Example 2.6 Under ideal conditions show that the volume flow through a venturimeter is given by
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Example 6.6 Show that when a manometric fluid of specific gravity S2 is used to measure the head
in a venturimeter with flow of fluid of specific gravity S1, if the manometer shows a reading of hm,
the volume flow is given by

Q = 
A

A A
gh

S
S

2

2 1
2 0 5

2

1

0 5

1
2 1

−
−

F
HG

I
KJ

L
N
M
M

O
Q
P
P( / )

.

.

Comparing the equation (6.6.1) with the problem at hand, it is seen that it is sufficient to prove,

h S
S

P P2

1

1 2

1
1−

F
HG

I
KJ = −

γ
 + (Z2 – Z1)

Considering the plane A–B in the manometer and equating the pressures at A and B Fig. Ex. 6.5 :
The manometer connection at the wall measures the static pressure only)

 P1 + Z1 γ1 + hγ1 = P2 + Z2γ1 + hγ2

(P1 – P2) + (Z1 – Z1) γ1 = h(γ2 – γ1), dividing by γ1,

 
P P1 2

1

−
γ

 + (Z1 – Z2) = h
γ
γ

2

1
1−

F
HG

I
KJ  = h

S
S

2

1
1−

F
HG

I
KJ

Hence volume flow,

Q = 
A

A A
gh

S
S

2

2 1
2 0 5

2

1

0 5

1
2 1

[ ( / ) ] .

.

−
−

F
HG

I
KJ

L
N
M
M

O
Q
P
P

This equation leads to another conclusion. The fluid head, H, causing the flow is equal to the
manometer reading h[(S2/S1) – 1] and flow is independent of the inclination if the reading of the
manometer and the fluids are specified.

i.e., As the manometer reading converted to head of flowing fluid, H = h[(S2/S1) – 1]

Q = 
A

A A
gH2

2 1
2 0 5

0 5

1
2

[ ( / ) ]
[ ].

.

−

If the pressure at various locations are specified, these equations are applicable for orifice and
nozzle meters also.

The pressure at C and B are atmospheric. Considering
locations C and B and taking the datum at B, applying
Bernoulli equation, noting that the velocity at water
surface at C = 0.

0 + 0 + VB
2/2g = 3 + 0 + 0

∴ VB = 7.672 m/s.

∴ Flow rate = (π D2/4) × V

= (π × 0.12/4) × 7.672

= 0.06 m3

A

C
Water level

Tank

Pipe, 100 mm f
B

3 m3 m

1.0 m1.0 m

Example. 2.7 Determine the flow rate through the siphon Fig. Ex. 6.7 when flow is established.
Also determine the pressure at A.

/s Figure Ex. 2.7 Problem model
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The velocity at A is the same as velocity at B. Now considering locations C and A,

  3 + 0 + 0 = 4 + (PA/γ) + 7.6722/ (2 × 9.81)

∴ PA/γ = – 4m or  – 4m of water head or 4m water-head below atmospheric pressure.

Check: Consider points A and B

4 + 
P V

g
V

g
A A B

2 2

2 2
 + 0 + 0 as VA = VB, PA

γ
 = – 4 m checks.

0.7 m

25 mm dr r

Bearing

0.1 m

1 2

Top plate
(fixed)

Bottom plate

r

dr

Element considered

Consider an element area of width dr (annular) in the flow region at a distance r as shown in
figure. The pressure at this location as compared to point 1 can be determined using Bernoulli
equation.

P1

γ
 + Z1 + V

g
P1

2
2

2
=

γ
 + Z2 + V

g
2

2

2
, P1 is atmospheric

As Z1 = Z2, P2 – P1 = 
γ

2g
(V1

2 – V2
2)

 V1
2 = (0.08/2π × 0.05 × 0.025)2 = 103.75

 V2
2 = (0.08/2π × 0.025 × r)2 = 0.2594/r2

(P2 – P1) is the pressure difference which causes a force at the area 2πrdr at r.

The force on the element area of the bottom plate = 2πrdr (P2 – P1)

Substituting and nothing γ = ρg/g0, the elemental force dF is given by,

 dF = ρ πrdr 103 75
0 2594

2.
.−L

NM
O
QPr

,

Integrating between the limits r = 0.05 to 0.35,

   Net force = 1000 × π (103.75 (0.35 0.05 ) / 2) 0.2594 ln
0.35
0.05

2 2− − F
HG

I
KJ

L
NM

O
QP
 = 17970  N

+ =
γ

Example.  2.8 Water  flows  in  at  a  rate  of  80  l/s  from the  pipe  as  shown in  Fig.  Ex.2  .8  and 
flows outwards  through  the  space  between  the  top  and  bottom  plates.  The  top  plate  is  fixed. 
Determinethe net force acting on the bottom plate. Assume the pressure at radius r = 0.05 m is 
atmospheric.

Figure Ex. 2.8 Problem model
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Compared to ideal flow the additional force that will be involved will be the shear force acting
on the surface of the element. Let the shear stress be τ, the force will equal τ 2πr ds (where r is
the radius of the element, and A = π r2

  
dP
ρ

 + VdV + gdZ – 
2τ

ρ
ds
r

 = 0

dP
γ

 + d
V

g

2

2

F
HG

I
KJ  + dZ – 

2τ
γ

ds
r

 = 0

 ds can also be substituted in terms of Z and θ

Bernoulli equation will now read as (taking s as the length)

 
P V

g
1 1

2

2γ
+  + Z1 = 

P V
g

2 2
2

2γ
+  + Z2 + 

2τ
γ

s
r

The last term is the loss of head due to friction and is denoted often as hL,hf in head of
fluid in metre height (check for the unit of the last term).

2
2/2g. where V2 is the

velocity at nozzle outlet. There is no loss in the nozzle.

Equating the total energy at inlet and outlet,

 20 = 12 + 
V

g
2
2

2
 + 10 

V
g
2
2

2
,

∴  V2
2 = 

8 2 9 81
11

× × .
 , V2 = 3.777 m/s

Flow = A2 V2 = 
π × 0 06

4

2.
 × 3.777 = 0.01068 m3/s = 0.64 m3/min.

(If losses do not occur then, V2 = 12.53 m/s and flow will be 2.13 m3/min)

3/s. The losses due to friction in the pipe length is accounted for
by 4.5 V2

2/2g.

2.7 EULER AND BERNOULLI EQUATION FOR FLOW WITH FRICTION

)

Refer Para 2.3 and Fig. 2.3.1. The Euler equation 6.3.3 will now read as

Example 2.9 The delivery line of a pump is 100 mm ID and it delivers water at a height of 12 m
above entry. The pipe ends in a nozzle of diameter 60 mm. The total head at the entry to the pipe is
20 m. Determine the flow rate if losses in the pipe is given by 10 V

Example 2.10 A tank with water level of 12 m has a pipe of 200 mm dia connected from its bottom
which extends over a length to a level of 2 m below the tank bottom. Calculate the pressure at
this point if the flow rate is 0.178 m
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Taking location of the outlet of the pipe as the datum, using Bernoulli equation and accounting for
frictional drop in head (leaving out the atmospheric pressure which is the same at the water level
and at outlet).

14 = 
P2
γ + 

V
g
2
2

2
 + 4.5 

V
g
2
2

2

∴ V2 = 0.178/π × 0.1 × 0.1 = 5.67 m/s

14 – 5.5 ×
5 67

2 9 81

2.
.×

 = 
P2
γ  = 5 m of water head.

∴ P2 = 9810 × 5 N/m2 = 0.49 bar (above atmospheric pressure)

Considering the bottom as the datum,

200 10
9810

3×
 + 0 + 

V
g
1
2

2
 = 

80 10
9810

3×
 + 6 + 

V
g
2
2

2
 +2

V2
2 = V1

2 (0.3/0.15)4 = 16V1
2

∴
120 10

9810

3×
  – 8 = 15

V
g
1
2

2
, Solving, V1 = 2.353 and V2 = 9.411 m/s

∴ Flow rate = A1 V1 = A2V2 = 0.166 m3/s

Example  2.11 A vertical pipe of diameter of 30 cm carrying water is reduced to a diameter of 15
cm. The transition piece length is 6 m. The pressure at the bottom is 200 kPa and at the top it is 80
kPa. If frictional drop is 2 m of water head, determine the rate of flow.

2.8 CONCEPT AND MEASUREMENT OF DYNAMIC, STATIC AND TOTAL
HEAD

In the Bernoulli equation, the pressure term is known as static head. It is to be measured by a
probe which will be perpendicular to the velocity direction. Such a probe is called  static probe.
The head measured is also called Piezometric head. (Figure 2.8.1 (a))

The velocity term in the Bernoulli equation is known as dynamic head. It is measured
by a probe, one end of which should face the velocity direction and connected to one limb of a
manometer with other end perpendicular to the velocity and connected to the other limb of the
manometer. (Figure 2.8.1 (b))

The total head is the sum of the static and dynamic head and is measured by a single
probe facing the flow direction. (Figure 2.8.1 (c))

The location of probes and values of pressures for the above measurements are shown in
Fig.2.8.1.
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h

h

Static
head

V
V

Dynamic
head

(a)

Total
head

(b) (c)

The velocity variation along the radius in a
duct can be conveniently measured by this
arrangement by traversing the probe across the
section. This instrument is also called pitot–static
tube.

Considering the location at which the dynamic head is measured as the datum and converting the
column of mercury into head of water, and noting that at the maximum point the velocity is zero,

0.9 × 13.6 + 0 + 0 = 0 + 0 + Z ∴ Z = 12.24 m

Note. If the head measured is given as the reading of a differential manometer, then the head
should be calculated as 0.9 (13.6 – 1) m.

Pitot
tube

Dynamic
head

Manometer

Static probe openings ( r to flow)

Total pressure probe (Facing flow)

	

Figure 2.8.1 Pressure measurement

2.8.1 Pitot Tube

Figure 2.8.2 Pitot-Static tube

The flow velocity can be determined by
measuring the dynamic head using a device known
as pitot static tube as shown in Fig. 2.8.2. The holes
on the outer wall of the probe provides the static
pressure (perpendicular to flow) and hole in the tube
tip facing the stream direction of flow measures the
total pressure. The difference gives the dynamic
pressure as indicated by the manometer. The head
will be h (s – 1) of water when a differential
manometer is used (s > 1).

Example 2.12 The dynamic head of a water jet stream is measured as 0.9 m of mercury column.
Determine the height to which the jet will rise when it is directed vertically upwards.
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Considering sections 1 and 2

 
P1
γ  + 

V
g
1
2

2
 Z1 = 

P1
γ

 + 
V

g
1
2

2
 + Z2

Considering tail race level, 2 as the datum, and calulating the velocities

 V1 = 8 m/s, V2 = 8 × 
0 5
12

2

2
.
.

 = 1.39 m/s.

 P2 = atmospheric pressure, Z2 = 0, Z1 = 3

 
P1
γ

 + 
8

2 9 81

2

× .
 + 3 = 

139
2 9 81

2.
.×

∴  
P1
γ

 = – 6.16 m of water. (Below atmospheric pressure)

Additional head provided due to the use of draft tube will equal 6.16 m of water

Note: This may cause cavitation if the pressure is below the vapour pressure at the temperature
condition. Though theoretically the pressure at turbine exit can be reduced to a low level, cavitation
problem limits the design pressure.

SOLVED PROBLEMS

 Q = 
A

A A

2

2 1
2 0.5

1 − /b g
2 12

1

0.5

gh
S
S

−
F
HG

I
KJ

L
N
MM

O
Q
PP

0.5 m

3 m3 m

1

2
Tail race

1.2

Example 2.13 A diverging tube connected to the outlet of a
reaction turbine (fully flowing) is called ‘‘Draft tube’’. The
diverging section is immersed in the tail race water and this
provides additional head for the turbine by providing a pres-
sure lower than the atmospheric pressure at the turbine exit.
If the turbine outlet is open the exit pressure will be atmos-
pheric as in Pelton wheel. In a draft tube as shown in Fig. Ex.
6.13, calculate the additional head provided by the
draft tube. The inlet diameter is 0.5 m and the flow velocity
is 8 m/s. The outlet diameter is 1.2 m. The height of the inlet
above the water level is 3 m. Also calculate the pressure at the
inlet section.

Problem 2.1 A venturimeter is used to measure the volume flow. The pressure head is
recorded by a manometer. When connected to a horizontal pipe the manometer reading was h
cm. If the reading of the manometer is the same when it is connected to a vertical pipe with flow
upwards and (ii) vertical pipe with flow downwards, discuss in which case the flow is highest.

Consider equation 2.6.2
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As long as ‘h’ remains the same, the volume flow is the same for a given venturimeter as
this expression is a general one derived without taking any particular inclination.

This is because of the fact that the manometer automatically takes the inclination into
account in indicating the value of (Z1 – Z2).

Using Bernoulli equation and neglecting losses

P1

γ  + 
V

g
1
2

2
 + Z1 = 

P2

γ + 
V

g
2
2

2
 + Z2, P1 = 2 bar (gauge) = 3 bar (absolute) 3 × 105 N/m2

V1 = 
Q
d( / )π × 2 4

 = 
0 6
0 5 42

.
( . / )π ×

 = 3.056 m/s can also use

V2 = V1 
D
D

2

1

2F
HG

I
KJ

  V2 = 
0 6

0 245 42

.
( . / )π × = 12.732 m/s, Substituting

3 10
9810

5×
 + 

3 056
2 9 81

2.
.×

 + 0 = 
P2

9810
 + 

12 732
2 9 81

2.
.×

 + 0

∴  P2 = 223617 N/m2 = 2.236 bar (absolute) = 1.136 bar (gauge)

Q = 
A

A A

2

2 1
2 0.5

1− /b g
2 12

1

0.5

gh
S
S

−
F
HG

I
KJ

L
N
MM

O
Q
PP

 A2 = (π/4) 0.032 as D2 = 3 cm

∴   (A2/A1)
2 = (D2/D1)

4 = (0.03/0.05)4,

h = 0.10 m S2 = 13.6, S1 = 0.8, Substituting,

 Q = 
π ×

−

0 03 4

1 0 03 0 05

2

4 0.5

. /

. / .

e j
b g

2 9 81 0 1
13 6
0 8

1
0.5

× × −F
HG

I
KJ

L
NM

O
QP

. .
.
.

  = 4.245 × 10–3 m3/s or 15.282 m3/hr or 4.245 l/s or 15282 l/hr or 3.396 kg/s

10 m

30°

3 cm f

5 cm f

Problem 2.2 Water flows at the rate of 600 l/s through a horizontal venturi with diameter
0.5 m and 0.245 m. The pressure gauge fitted at the entry to the venturi reads 2 bar. Determine
the throat pressure. Barometric pressure is 1 bar.

Problem 2.3 A venturimeter as shown in Fig P. 6.3 is
used measure flow of petrol with a specific gravity of 0.8. The
manometer reads 10 cm of mercury of specific gravity 13.6.
Determine the flow rate.

Using equation 2.6.2
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Using equation (6.6.2)

 Q = 
A

A A

2

2 1
2 0.5

1 − /b g
2 12

1

0.5

gh
S
S

−
F
HG

I
KJ

L
N
MM

O
Q
PP

A1 = π × 0 06
4

2.  = 2.83 × 10–3 m2 ;

A2 = 
π × 0 04

4

2.
 = 1.26 × 10–3 m2

3 ×10–3 = 
126 10

1
10
10

2 9 81
13 6
0 8

1
3

3

3

2 0.5

0.5
.

.
.
.

×

− ×
×

F
HG

I
KJ

L

N
M
M

O

Q
P
P

× × −F
HG

I
KJ

L
NM

O
QP

−

−

−
1.26
2.83

h

Solving,  h = 0.0146 m = 14.6 mm. of mercury column.

3/s. At section 1 the pipe
dia is 0.5m and pressure is 800 kPa. If pressure at section 2 is 600 kPa, determine the pipe
diameter at that location. Neglect losses.

Using Bernoulli equation,

 
P1

γ  + 
V

g
1
2

2
 + Z1 = 

P2

γ  + 
V

g
2
2

2
 + Z2

800 10
9810

3×
 + 

0 9 4 0 5

2 9 81

2. / .

.

× ×

×

πe j
+ 0 = 

600 10
9810

3×
 + 

V2
2

2 9 81× .
 +1.5

Solving,  V2 = 19.37 m/s.

 Flow = area × velocity, 
π × d2

2

4
 ×19.37 = 0.9 m3/s

Solving for d2, Diameter of pipe at section 2 = 0.243 m

As (p/γ) is involved directly on both sides, gauge pressure or absolute pressure can be
used without error. However it is desirable to use absolute pressure to aviod nagative pressure
values.

Problem 2.4 A liquid with specific gravity 0.8 flows at the rate of 3 l/s through a
venturimeter of diameters 6 cm and 4 cm. If the manometer fluid is mercury (sp. gr = 13.b)
determine the value of manometer reading, h.

Problem 2.5 Water flows upwards in a vertical pipe line of gradually varying section
from point 1 to point 2, which is 1.5m above point 1, at the rate of 0.9m

Problem 2.6 Calculate the exit diameter, if at the inlet section of the draft tube the
diameter is 1 m and the pressure is 0.405 bar absolute. The flow rate of water is 1600 l/s. The
vertical distance between inlet and outlet is 6 m.
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Applying Bernoulli equation between points 1 and 2, neglecting losses

P1

γ  + 
V

g
1
2

2
 + Z1 = 

P2

γ  + 
V

g
2
2

2
 + Z2

V1 = 
Q

D

×
×

4

1
2π

 = 
1600 10 4

1

3

2

× ×
×

−

π  = 2.04 m/s

P2 = atmospheric pressure; Z2 = 0 (datum); Z1 = 6 m

0 405 10
9810

5. ×
 + 

2 04
2 9 81

2.
.×

 + 6 = 
1013 10

9810

5. ×
 + 

V2
2

2 9 81× .
 + 0 ∴ V2 = 0.531 m/s

A
A

2

1
 = 

V
V

1

2
 = 

D2
2

21
 = 

2 04
0 531

.
.

∴ D2 = 1.96 m

0.405 bar absolute means vacuum at the inlet section of the draft tube. This may cause
‘‘cavitation’’ if this pressure is below the vapour pressure at that temperature. Though
theoretically the pressure at turbine exit, where the draft tube is attached, can be reduced to a
vary low level, cavitation problem limits the pressure level.

Applying Bernoulli equation between points 1 (bottom) and 2 (top) and considering the
bottom level as datum.

P1

γ
 + 

V
g
1
2

2
 + Z1 = 

P2

γ
 + 

V
g
2
2

2
 + Z2 + losses

8 10
9810

2×
 + 

( ) / . )
.

200 10 4 0 24
2 9 81

3 2 2× × ×
×

− π
 + 0

= 
7 3 10

9810

5. ×
+ 

( )/( )200 10 4
2

3 2× × ×
×

− π 0.2
9.81

2

+ 5 + losses

∴ Losses = 1.07 m

1.07 = X
V

g
2
2

2
 = X

200 10 4
0 22

2
3 2

× ×
×

L
N
M

O
Q
P

−

π .
/  × 9.81 ∴ X = 0.516,

Loss of head = 0.516 
V

g
2
2

2

Problem 2.7 Water flows at the rate of 200 l/s upwards through a tapered vertical pipe.
The diameter at the bottom is 240 mm and at the top 200 mm and the length is 5m. The pressure
at the bottom is 8 bar, and the pressure at the topside is 7.3 bar. Determine the head loss
through the pipe. Express it as a function of exit velocity head.
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Applying Bernoulli equation (neglecting losses) between points 1 and 2

P1

γ  + 
V

g
1
2

2
 + Z1 = 

P2

γ  + 
V

g
2
2

2
 + Z2

P1 = 2 × 105 N/m2; P2 = 0.8 ×105 N/m2 ;

Z1 = 0, Z2 = 2 m

2
0.8 bar

2 m

0.2

1 2 bar

0.5
h

 A1V1 = A2V2, V2 = V1

A
A

1

2
 = V1

π
π

×
×

F
HG

I
KJ

0 5 4
0 2 4

2

2
. /
. / = 6.25 V1

2 10
9810 0 8

5×
× .

+ 
V1

2

2 9 81× .
+ 0 = 

0 8 10
9810 0 8

5.
.

×
×  + 

6 25

2 9 81
1

2.

.

Vb g
×

 + 2 ∴V1 = 2.62 m/s

Flow rate,  Q = A1 V1 = 
π × 0 5

4

2.
 × 2.62 = 0.514 m3/s = 514 l/s

Using equation (6.6.2) (with A2 = 0.031 m2, A1 = 0.196 m2)

Flow rate,  Q = 
A

A A
gh

S
S

2

2 1
2 0.5

2

1

0.5

1
2 1

−
−

F
HG

I
KJ

L
N
MM

O
Q
PP/b g

0.514 = 
0 031

1
0 031
0 196

2 9 81
13 6
0 8

1
2 0.5

0.5
.

.

.

.
.
.

− F
HG

I
KJ

L
N
M
M

O
Q
P
P

× × −F
HG

I
KJ

L
NM

O
QP

h

Solving, h = 0.854 m

Problem 2.8 Calculate the flow rate of oil (sp. gravity, 0.8) in the pipe line shown in
Fig. P. 2.8. Also calculate the reading ‘‘h’’ shown by the differential manometer fitted to the
pipe line which is filled with mercury of specific gravity 13.6.

Figure P. 2.8

Applying continuity equation between points 1 and 2
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1
= P2 = 2 bar absolute, determine the direction of flow.

Consider datum as plane 2

Total head 1,
2 10
9810

5×
 + 

0.4 4/ 0.35

2 9.81

2 2
× ×

×

πe j
 + 4 = 25.27 m water column

Total head at 2, 
2 10
9810

5×
 +  

0.4 4/ 0.3

2 9.81

2 2
× ×

×

πe j
 + 0 = 22.02 m of water column

The total energy at all points should be equal if there are no losses. This result shows
that there are losses between 1 and 2 as the total energy at 2 is lower. Hence the flow will
take place from points 1 to 2.

2
0.69 bar

0.15 m

1 1.38 bar

0.3 m
h

B A

1.2 m1.2 m

P1

γ
 + 

V
g
1
2

2
 + Z1 = 

P2

γ
 + 

V
g
2
2

2
 + Z2, Z1 = 0, Z2 = 1.2  m, V2 = V1

A
A

1

2
 = V

D
D1

1
2

2
2

F
HG

I
KJ

∴ V2
2 = V1

2 
D
D

1
4

2
4

F
HG

I
KJ  = 16 V1

2 as D1/D2 = 2

Problem 2.9 Water flows at the rate of 400 l/s through the pipe with inlet (1) diameter of
35 cm and (2) outlet diameter of 30 cm with 4m level difference with point 1 above point 2. If P

Problem 2.10 Petrol of relative density 0.82 flows in a pipe shown Fig. P.2.10. The
pressure value at locations 1 and 2 are given as 138 kPa and 69 kPa respectively and point 2 is
1.2m vertically above point 1. Determine the flow rate. Also calculate the reading of the
differential manometer connected as shown. Mercury with S = 13.6 is used as the manometer
fluid.

Figure P. 2.10 Problem Model

Considering point 1 as a datum and using Bernoulli equation.
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v = 6 m/s1

1
0.3 m

3 m3 m

2

 
138 10

0 82 9810

3×
×.

 + 
V

g
1
2

2
 + 0 = 

69 10
0 82 9810

3×
×.

 + 16 
V

g
1
2

2

F
HG

I
KJ  + 1.2

 
138 69 10
0 82 9810

3−
×

b g
.

 – 1.2 = 15
V

g
1
2

2
. Solving, V1 = 3.106 m/s

∴   Volume flow = 
π × 0 3

4

2.
 × 3.106 = 0.22 m3/s or 180 kg/s

The flow rate is given by equation 6.6.2

 Q = 
A

A
A

gh
S
S

2

2

1

2 0.5
2

1

0.5

1

2 1

−
F
HG

I
KJ

L

N
M
M

O

Q
P
P

−
F
HG

I
KJ

L
N
MM

O
Q
PP

, 
S
S

2

1
 = 

13 6
0 82

.
.

0.22 = 
π ×

− F
HG

I
KJ

L
N
M
M

O
Q
P
P

× × −F
HG

I
KJ

L
NM

O
QP

0.15

0.15
0.3

9.81
13.6
0.82

1
2

4 0.5

0.5
4

1

2
/

h

Solving,  h = 0.475 m of mercury column

Applying Bernoulli equation between points 1 and 2
(taking level 2 as datum)

 
P1

γ  + 
6

2 9 81

2

× .
 + 3 = 

P2

γ  + 
V

g
2
2

2
 + 0

as P1 = P2, V2 = 9.74 m/s

Using the relation A1 V1 = A2V2,

 
π × ×0 3 6

4

2.
 = 

π × ×d2 9 74
4

.

∴  d = 0.2355 m.

Problem 2.11 Water flows downwards in a pipe as shown
in Fig. P.6.11. If pressures at points 1 and 2 are to be equal,
determine the diameter of the pipe at point 2. The velocity
at point 1 is 6 m/s.

Figure P. 2.11 Problem model

Problem 2.12 A siphon is shown in Fig P. 2.12. Point A is 1m above the water level,
indicated by point 1. The bottom of the siphon is 8m below level A. Assuming friction to be
negligible, determine the speed of the jet at outlet and also the pressure at A.
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Using Bernoulli equation, between 1 and 2.

1
1 m

A

8 m

2

P1

γ
 + 

V
g
1
2

2
 + Z1 = 

P2

γ
 + 

V
g
2
2

2
 + Z2 ,

P1 = P2 = atmospheric pressure.

Consider level 1 as datum. The velocity of water at the surface is zero.

∴  0 + 0 = 
V

g
2
2

2
 – 7

∴ V2 = 7 2 9 81× × .  = 11.72 m/s = VA

Considering surface 1 and level A. As flow is the same,

P1

γ  + 0 + 0 = 
PA

γ  + 1 +
V

g
A
2

2

Considering P1/γ = 10.3 m of water,

PA

γ
 = 

P1
γ

 – 1 – V
g
2
2

2
 = 10.3  – 1 – 7

= 2.3 m of water column (absolute)

Considering outlet level 3 as datum and water level as 1 and appyling Bernoulli equation,

Z3 = 0, Z1 = 8, V1 = 0, P1 = P3

∴ 8 = 
V

g
3
2

2
∴ V3 = 8 9 81 2× ×.  = 12.53 m/s

Figure P. 2.12 Problem  model

Problem 2.13  A pipe line is set up to draw water from a reservoir. The pipe line has to
go over a barrier which is above the water level. The outlet is 8 m below water level. Determine
the maximum height of the barrier if the pressure at this point should not fall below 1.0 m
of water to avoid cavitation. Atmospheric pressure is 10.3 m.
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WL 1

2

3

h

8 m

Considering the barrier top as level 2

P2

γ  + 
V

g
2
2

2
 + Z2 = 

P3

γ  + 
V

g
3
2

2
 + Z3, As V2 = V3, Z3 = 0, P2/γ = 1

1 + Z2 = 10.3

∴  Z2 = 9.3 m. Therefore the barrier can be 1.3 m above water level.

Applying Bernoulli equation between point 1 in the upstream and point 2 in the
downstream on both  sides of the shutter, both surface pressures being atmospheric.

V
g
1
2

2
 + 5 = 

V
g
2
2

2
 + 2 (1)

Applying continuity equation, flow rate, Q = A1V1 = A2V2

(1 × 5) V1 = (1 × 2) V2, � V2 = 2.5 V1, Substituting in equation (1),

V1
2

2 9 81× .
 +  5 = 

2 5

2 9 81
1

2.

.

Vb g
×

 + 2,

∴ V1 = 3.35 m/s, V2 = 8.37 m/s. Q = 16.742 m3/s,

3/s/m, determine the level downstream.

Assume velocities V1 and V2 upstream and downstream of shutter and the datum as the
bed level. Using Bernoulli equation

2 + 
V

g
1
2

2
 = h2 + 

V
g
2
2

2
(A)

Considering unit width from continuity 1 × 2 × V1 = 1 × h2 × V2 (B)

∴ V2 = (2/h2) V1, from flow rate V1 = 3/2 = 1.5 m/s ∴ V2 = 
3

2h

Figure P. 2.13 Problem  model

Problem 2.14 Determine the flow rate of water across the shutter in an open canal if
the water level upstream of shutter is 5m and downstream is 2m. The width of the canal is 1m
and flow is steady.

Problem 2.15 Uniform flow rate is maintained at a shutter in a wide channel. The
water level in the channel upstream of shutter is 2m. Assuming uniform velocity at any section
if the flow rate per m length is 3m
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Substituting

2 + 
1.5

2 9.81

2

×
 = h2 + 

3
2 9 81

2

2h × × .

Simplifying, this reduces to h2
3 – 2.1147 h2

2 + 0.4587 = 0

Solving, h2 can be 2 m, – 0.425 m, 0.54 m

h2 = 0.54 m is the acceptable answer. 2m being trivial.

Using B,  0.54 × V2 × 1 = 2 ×1.5 = 3. ∴ V2 = 5.56 m/s.

check using A,  2 + 0.1147 = 0.54 + 1.57 checks.

The difference between the dynamic head values will equal the difference between the
datum heads. This may be checked using the calculated velocity values.

s
2/2g. The delivery line is of 100 mm dia and the loss in the line is 12 Vd

2/2g. The water is
delivered through a nozzle of 75 mm dia. The delivery is at 30m above the pump centre line.
Determine the velocity at the nozzle outlet and the pressure at the pump inlet.

Let the velocity at the nozzle be Vn

Velocity in the delivery pipe = Vd = Vn × 
75

100

2

2  = 
9
16

Vn

Velocity in suction pipe Vs= Vn  
75
150

2F
HG

I
KJ  = 

Vn

4

Kinetic head at outlet = 
V

g
n
2

2

Loss in delivery pipe = 
V

g
d
2

2
  = 12 × 

9
16

2F
HG

I
KJ  

V
g
n
2

2
 = 3.797 

V
g
n
2

2

Loss in suction pipe = 
V

g
s
2

2
  = 

5
16

 
V

g
n
2

2
 = 0.3125

V
g
n
2

2

Equating the head developed to the static head, losses and kinetic head,

50 = 30 + 2 + 
V

g
n
2

2
 [1 + 3.797 + 0.3125]

  18 × 2 × 9.81 = Vn
2 [5.109]

∴ Velocity at the nozzle Vn = 8.314 m/s

Pressure at suction : Taking datum as the water surface and also the velocity of the
water to be zero at the surface,

Problem 2.16 A pump with centre line 2m above the sump water level develops 50m
head of water. The suction pipe is of 150 mm ID. The loss of head in the suction line is given by
5 V
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P1 as atmospheric, 10.3 m of water column, Kinetic head V2/2g, loss 5V2/2g

10.3 = 
P2
γ

 + 2 + 
8.314/4
2 9.81

2b g
×

F
HG

I
KJ

 × (5 + 1) (as Vs = Vn/4)

∴
P2

γ  = 10.3 – 3.321 m = 6.979 m absolute

0 is projected at angle θ. Describe the path of the
free jet. Also calculate the maximum height and the horizontal distance travelled.

The horizontal component of the velocity of jet is Vxo = V o cos θ. The vertical component
Vzo = Vo sin θ.

In the vertical direction, distance travelled, Z, during time t, (using the second law of
Newton)

Z = Vzo t – (1/2) gt2 (A)

The distance travelled along x direction

X = Vxo t or t = X/Vxo (B)

Solving for t from B and substituting in A,

 Z = 
V
V

zo

xo
 X – 

1
2

 g

Vxo
2

 X2 (C)

Z value can be maximised by taking dz/dx and equating to zero

dz
dx

 = 
V
V

zo

xo

 – 
1
2

 
g

Vxo
2

 2X,
V
V

zo

xo
 = 

gX

Vxo
2 ∴ X = VzoVxo/g

Substituting in C,

Zmax = 
V
V

zo

xo
. 

V V
g

zo xo  – 
1
2

 
g

Vxo
2

. V V

g
zo xo
2 2

2

= 
1
2

 
V
g
zo
2

  = 
V

g
0

2 2

2
sin θ

,   Zmax = Vo
2 sin2 θ/2g (D)

The maximum height is achieved when θ = 90°.

∴ Xmas = 2 times x as Zmax.

Xmax = 2Vo
2 sin θ cos θ /g = Vo

2 sin 2θ/g (E)

Maximum horizontal reach is at θ = 45° or 2θ = 90° and for this angle it will reach half

t + Vt
2/2g = constant along the rejectory. Vt  is the

velocity at that location when air drag is neglected. Pressure is assumed to be uniform all over
the trejectory as it is exposed to atmosphere all along its travel. Hence

or 3.321 m below atmospheric pressure.

Problem 2.17 A liquid jet at a velocity V

the vertical height.

This describes an inverted parabola as shown in Fig. P.2.17

Bernoulli equation shows that Z
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 Zt + Vt
2 /2g = constant for the jet.

(Note: Velocity at time t = Vzo t = V0 sin θ + a × t, where a = – g, so the velocity decreases,
becomes zero and then turns – ve)

V
2
0

2g

Vx
2
0

2g
V

2

2g
Jet path

Vx0

Total head = Energy grade line

V = V = constantx x0

z z0V = V – gt

P

Z

Vz0
V0

q
Vx0 = V cos0 q

V0 sin q

0

Vx0 V
g

z0

X

Zmax =
Vz 0

2

2g

xo = Vo cos 30 = 20 cos 30 = 17.32 m/s;

Vzo = Vo sin 30 = 20 sin 30 = 10 m/s;

at time t, X = Vxot; Z = Vzo t – (1/2) gt2, Substituting for t as X/Vxo with X = 25 m

 Z = 
V
V

zo

xo
 X – 

1
2

g

Vxo
2

 X2 (A)

Height cleared, Z25 = 
10

17 32.
 × 25 – 

1
2

 9 81
17 322

.

.
 × 252 = 4.215 m

Maximum height of the jet trajectory = 
V

g
zo
2

2
 = 

10
2 9 81

2

× .
 = 5.097 m

Corresponding horizontal distance = 
V V

g
xo zo  = 

17 32 10
9 81

.
.

×
 = 17.66 m

Total horizontal distance is twice the distance travelled in reaching

 Zmax = 35.32 m

It would have crossed this height also at 10.43 m from the starting point (check using
equations derived in Problem 6.17).

Problem 2.18 A jet issuing at a velocity of 20 m/s is directed at 30° to the horizontal.
Calculate the height cleared by the jet at 25m from the discharge location? Also determine
the maximum height the jet will clear and the corresponding horizontal location.

Ref Fig. P. 2.17

V
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xo = Vo cos 40, Vzo = Vo sin 40,

 X = Vxo t, t = 
X

Vxo
, Z = Vzo t – (1/2) gt2

Substituting for t as X/Vxo

 Z = 
V
V

zo

xo
X – 

1
2 2

g

Vxo
 X2 (A)

Substituting the values,

 6 = 
V
V V

o

o o

sin
cos

.
cos

40
40

20
1
2

9 81 20
40

2

2 2× − × ×

      6 = 20 tan 40 – 
1
2

9 81 20
40

2

2 2
.

cos
×

Vo
(B)

∴ Vo
2 = 

9 81 20
2 40 20 40 6

2

2
.

cos ( tan )
×

−
 = 310 ∴ Vo = 17.61 m/s.

Maximum height reached

= Vzo
2/2g = (Vo sin 40)2/2g

= (17.61 × sin 40)2 /2 × 9.81 = 6.53 m

The X value corresponding to this is, (half total horizontal travel)

 X = VxoVzo/g = 17.612 sin 40 cos 40/9.81 = 15.56 m.

This shows that the jet clears 6m height at a distance of 20 m as it comes down. The jet
would have cleared this height at a distance less than 15.56 m also. By symmetry, this can be
calculated as – (20 – 15.56) + 15.56 = 11.12 m

check by substituting in equation B.

11.12 tan 40 – 
1
2

 × 
9 81 1112

17 61 40

2

2 2

. .
. cos

×
 = 6

When both Z and X are specified unique solution is obtained. Given Vo and Z, two values
of X is obtained from equation A.

Refer Problem 6.17. X = Vxo t, Z = Vzo t – (1/2) gt2

The vertical velocity at any location/time is given by,

Vzt = 
dz
dt

 = Vzo – gt

Problem 2.19 Determine the velocity of a jet directed at 40° to the horizontal to clear
6 m height at a distance of 20m. Also determine the maximum height this jet will clear and the
total horizontal travel. What will be the horizontal distance at which the jet will be again at 6m
height.

From basics, referring to Fig. P. 2.17,

 V

Problem 2.20 Determine the angle at which a jet with a given velocity is to be projected
for obtaining maximum horizontal reach.
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The horizontal distance travelled will be half the total distance travelled when

Vzt = 0 or t = Vzo/g

Total X distance travelled during time 2t.

X = 2 Vxo Vzo/g = 2 Vo
2 cos θ sin θ/g = Vo

2 sin 2θ/g

For X to be maximum sin 2θ should be maximum or 2θ = 90° or

θθθθθ = 45°. For maximum horizontal reach, the projected angle should be 45°.

The maximum reach, X = Vo
2/g as sin 2θ = 1.

Fall

Rise

4 m4 m

10 m10 m

29.3°

82.5°

 Z = 
V
V

zo

xo
x – 

1
2

2

2
gx

Vxo

Substituting in terms of Vo and θ.

 Z = 
V
V

o

o

sin
cos

θ
θ x – 

1
2

2

2 2
gx

Vo cos θ   = x tan θ – 
1
2

 
gx

Vo

2

2  (sec2 θ)

Z = x tan θ – 
1
2

2

2
gx

Vo
 (1 + tan2 θ)

Substituting the given values, 4 = 10 tan θ – 1
2

9 81 10
20

2

2
. ×  (1 + tan2 θ)

Hence, tan2 θ – 8.155 tan θ + 4.262 = 0, solving tan θθθθθ = 7.594 or 0.5613

This corresponds to θθθθθ = 82.5° or 29.3°. In the first case it clears the height during the
fall. In the second case it clears the height during the rise. See Fig. P.6.21.

Problem 2.21 Determined the angle at which a jet with an initial velocity of 20 m/s
is to be projected to clear 4m height at a distance of 10 m.
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1 and H2 from
the water level at the top. Both reach the same point at the ground level of the tank. If the
distance from the ground level to the jet levels are y1 and y2. Show that H1y1 = H2y2.

WL

H2

H1
A

B

y2

y1

X

GL

In this case the jets issue out at A and B horizontally and so the position can be taken as
the  Zmax position.

Referring to Problem 6.17, eqn. (D)

Zmax = 
V

g
zo

2

2
, y1 = 

V
g

zo1
2

2 or Vzo1  = 2 1gy

Similarly, y2 = 
V

g
zo

2
2

2
or Vzo2 = 2 2gy (A)

(Vzo1 and Vzo2 are the Z components at point where the jet touches the ground)

 Xmax = 
V V

g
zo xo

 and so 
V V

g
zo xo1 1

 = 
V V

g
zo xo2 2

(B)

 Vxo1 = 2 1gH , Vxo2 = 2 2gH (C)

Substituting results (A) and (C) in equation (B), and simplifying,

 
2 21 1gH gy

g
 = 

2 22 2gH gy

g
∴ H1 y1 = H2 y2

As V = 0 at a height of 20 m, Bernoulli equation reduces to

 
V

g

2

2
 = 20,

Problem 2.22 From a water tank two identical jets issue at distances H

Problem 2.23 A jet of water initially 12 cm dia when directed vertically upwards, reaches
a maximum height of 20 m. Assuming the jet remains circular determine the flow rate and
area of jet at 10 m height.
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∴  V = (20 × 9.81 × 2)0.5 = 19.809 m/s

 Flow rate = area × velocity = 
π × 0 12

4

2.
 × 19.809 = 0.224 m3/s

When the jet reaches 10 m height, the loss in kinetic energy is equal to the increase in
potential energy. Consider this as level 2 and the maximum height as level 1 and ground as
datum,

P1 = P2, V1 = 0, Z2 = Z1 – 10 = (20 – 10) = 10

20 = 10 + 
V

g

2
20

2
∴

V
g

2
2

2
 = 10,

∴ V2 = (10 × 2 × 9.81)0.5 = 14 m/s

 Flow rate = area × velocity, 0.224 = 
π × D2

4
 × 14 ∴ D = 0.1427 m

2
2/2g.

 
P V

g
1 1

2

2γ
+  + Z1 = 

P V
g

2 2
2

2γ
+  + Z2 + losses

0 + 0 + 10 = 
0 5 10

9810 2 9 81

5
2

2.
.

× +
×
V

 + 0 + 4.5 
V2

2

2 9 81× .

Solving, V2 = 4.18 m/s

Flow rate = 
π × 0 15

4

2.
 × 4.18 = 0.0739 m3/s = 73.9 l/s.

o is emptied by a smooth orifice
at the bottom. Derive an expression for the time taken to
reduce the height to h. Also find the time tmax for emptying
the tank.

Considering point 1 at the top of the tank and point 2
at the  orifice entrance, and point 2 as datum

 Patm + 
V

g
1
2

2
 + h = 

V
g
2

2

2
 + patm

∴ V
g

h1
2

2
+  = 

V
g
2

2

2

Also V1
2 = V2

2 d
D
L
NM

O
QP

4

DD

hh

h0h0

– dh

d

Problem 2.24 Water is discharged through a 150 mm dia pipe fitted to the bottom of a
tank. A pressure gauge fitted at the bottom of the pipe which is 10 m below the water level shows
0.5 bar. Determine the flow rate. Assume the frictional loss as 4.5V

Applying Bernoulli equation between the water level, 1 and the bottom of the pipe, 2
and this level as datum

Problem 2.25  An open tank of diameter D
containing water to depth h

Figure P. 2.25 Problem model
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∴    V2 = 
2

1 4
gh

d D− ( / )

Let the level at the time considered be h.
The drop in level dh during time dt is given by (as dh is negative with reference to

datum)

dh
dt

V A
A

d
D

gh

d
D

= − = − F
HG

I
KJ

− F
HG

I
KJ

2 2

1

2

4

2

1

Taking 
d
D

F
HG

I
KJ

2

 inside and rearranging

dh
dt

gh

D
d

= −
F
HG

I
KJ −

2

1
4

Separating variables and integrating

dh
h

g

D
d

dt
t

h

h

o

= −
F
HG

I
KJ −

zz 2

1
4 0

.

2
2

1
4h h
g

D
d

to − =
F
HG

I
KJ −

.
(A)

t = 2( ) /h h
g

D
d

o −
F
HG

I
KJ −

2

1
4  = h ho − /

g

D
d

/ 2

1
4F

HG
I
KJ − (B)

Equation (A) can be rearranged to give

 
h
h

t g h

D
d

o

0 4

2

1
2

1

= −
F
HG

I
KJ −

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

/

(C)

Equation (B) will be useful to find the drop in head during a given time interval.
Consider a numerical problem.
Let  D = 0.5 m, d = 0.025 m, ho = 0.5 m,
Time for emptying is calculated as h = 0,

t = ho /

g

D
d

/ 2

1
4F

HG
I
KJ −

64



VED

P-2\D:\N-fluid\Fld6-3.pm5

= 0 5. /

9 81 2

0 5
0 025

1
4

. /

.
.

F
HG

I
KJ −  = 127.7 seconds.

To find the drop in level in say 100 seconds.

h
ho

= −
×

F
HG

I
KJ −

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

1

2

100 9.81/ 2 0.5

0.5
0.25

1
4  = 0.0471

∴ Drop in head = 0.5 (1 – 0.0471) = 0.4764 m

In case d << D, then V2 = 2gh  when head is h m

 
dh
dt

A V
A

= − 2 2

1
 = – V2 

d
D

d
D

ghF
HG

I
KJ = − F

HG
I
KJ

2 2

2.

Separating variables and integrating

dh

hh

h

o
z  = – 

d
D

g dt
tF

HG
I
KJ z

2

0
2 .

2 [ ho  – h ] = 
d
D

g tF
HG

I
KJ

2

2 .

In this case to empty the tank,

2 0 5.  = 
0 025
0 5

2 9 81
2.

.
. .F

HG
I
KJ ×  . t.

Solving t = 127.71 s.

The same answer because the same diameter of the orifice is used. Say d = 0.01 m, then
time for employing is 1130 sec.

Consider top jet:

x distance travelled in time t is 10 m.

∴  Vxo1t = 10 (A)

t = 10/Vxo1

The height drop is as Vzo as start is zero,

∴  Vzo1t = H = 
1
2

 gt2 (B)

Problem 2.26 Two identical jets issuing from a touch as shown in figure reach the
ground at a distance of 10 m. Determine the distances indicated as h and H.
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HH

hh

4 m4 m

Z

1

2

10 m10 m

3
x

 H = 
1
2

 g 100

2Vxo

∴ V2
xo =  

50g
H

As jet issues from the nozzle it has any x directional velocity Vxo1, is present.

 V2
xo1 = 2 g4 = 8g (C) (as head available in 4 m)

Substituting, 8g = 
50g
H

or H = 6.25 m.

Considering the second jet.

Vxo2 t = 10, t = 
10

2Vxo
,

The head drop in (H – h) m. As in the previous case Vzoc = 0 at start

H – h = 
1
2

 gt2. Substituting

H – h = 
1
2

g 
1

2
2

V

V
o

xo

 = 
50

2
2

g

Vxo
(D)

As at start only Vxo2 is present,

 Vxo2
2 = (4 + h) g × 2

Substituting in (D)

H – h = 
50

4 2
g

h g( )+ ×  = 
25

4 + h
, as H = 6.25 m.

 6.25 – h = 
25

4 + h
. This leads to

 h2 – 2.25h = 0, or h = 2.25 m.

It may be also noted from problem 6.22.

H × 4 = (H – h) (4 + h).

6.25 × 4 = 4 × 6.25

Hence this condition is also satisfied.
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