

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

V PROCESS SYNCHRONIZATION

 The concept of Process synchronization in an Operating System.

 Process Synchronization was introduced to handle problems that arose while multiple process

executions.

 Process is categorized into two types on the basis of synchronization and these are given below:

 Independent Process

 Cooperative Process

1. Independent Processes

Two processes are said to be independent if the execution of one process does not affect the execution

of another process.

2. Cooperative Processes

Two processes are said to be cooperative if the execution of one process affects the execution of another

process. These processes need to be synchronized so that the order of execution can be guaranteed.

Process Synchronization

 It is the task phenomenon of coordinating the execution of processes in such a way that no two

processes can have access to the same shared data and resources.

 It is a procedure that is involved in order to preserve the appropriate order of execution of

cooperative processes.

 In order to synchronize the processes, there are various synchronization mechanisms.

 Process Synchronization is mainly needed in a multi-process system when multiple processes are

running together, and more than one processes try to gain access to the same shared resource

or any data at the same time.

1. Race Condition

At the time when more than one process is either executing the same code or accessing the same

memory or any shared variable; In that condition, there is a possibility that the output or the value of the

shared variable is wrong so for that purpose all the processes are doing the race to say that my output is

correct. This condition is commonly known as a race condition. As several processes access and process

the manipulations on the same data in a concurrent manner and due to which the outcome depends on

the particular order in which the access of data takes place.

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

Mainly this condition is a situation that may occur inside the critical section. Race

condition in the critical section happens when the result of multiple thread execution differs according to

the order in which the threads execute. But this condition is critical sections can be avoided if the critical

section is treated as an atomic instruction. Proper thread synchronization using locks or atomic variables

can also prevent race conditions.

2. Critical Section Problem

A Critical Section is a code segment that accesses shared variables and has to be executed as an

atomic action. It means that in a group of cooperating processes, at a given point of time, only one process

must be executing its critical section. If any other process also wants to execute its critical section, it

must wait until the first one finishes. The entry to the critical section is mainly handled by wait()

function while the exit from the critical section is controlled by the signal() function.

3. Entry Section

In this section mainly the process requests for its entry in the critical section.

4. Exit Section

This section is followed by the critical section.

The solution to the Critical Section Problem

A solution to the critical section problem must satisfy the following three conditions:

1. Mutual Exclusion

Out of a group of cooperating processes, only one process can be in its critical section at a given

point of time.

2. Progress

If no process is in its critical section, and if one or more threads want to execute their critical section then

any one of these threads must be allowed to get into its critical section.

3. Bounded Waiting

After a process makes a request for getting into its critical section, there is a limit for how many other

processes can get into their critical section, before this process's request is granted. So after the limit is

reached, the system must grant the process permission to get into its critical section.

Solutions for the Critical Section

The critical section plays an important role in Process

Synchronization so that the problem must be solved. Some widely used method to solve the critical

section problem is as follows:

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

1. Peterson’s Solution

 This is widely used and software-based solution to critical section problems. Peterson's solution was

developed by a computer scientist Peterson that's why it is named so.

 With the help of this solution whenever a process is executing in any critical state, then the other

process only executes the rest of the code, and vice-versa can happen. This method also helps to make

sure of the thing that only a single process can run in the critical section at a specific time.

This solution preserves all three conditions:

 Mutual Exclusion is comforted as at any time only one process can access the critical section.

 Progress is also comforted, as a process that is outside the critical section is unable to block other

processes from entering into the critical section.

 Bounded Waiting is assured as every process gets a fair chance to enter the Critical section.

 Suppose there are N processes (P1, P2, ... PN) and as at some point of time every process requires to

enter in the Critical Section

 A FLAG[] array of size N is maintained here which is by default false. Whenever a process requires

to enter in the critical section, it has to set its flag as true. Example: If Pi wants to enter it will

set FLAG[i]=TRUE.

 Another variable is called TURN and is used to indicate the process number that is currently waiting

to enter into the critical section.

 The process that enters into the critical section while exiting would change the TURN to another

number from the list of processes that are ready.

 Example: If the turn is 3 then P3 enters the Critical section and while exiting turn=4 and

therefore P4 breaks out of the wait loop.

Synchronization Hardware

 Many systems provide hardware support for critical section code. The critical section problem could be

solved easily in a single-processor environment if we could disallow interrupts to occur while a shared

variable or resource is being modified.

 In this manner, we could be sure that the current sequence of instructions would be allowed to execute in

order without pre-emption. Unfortunately, this solution is not feasible in a multiprocessor environment.

 Disabling interrupt on a multiprocessor environment can be time- consuming as the message is passed

to all the processors.

 This message transmission lag delays the entry of threads into the critical section, and the system

efficiency decreases.

Mutex Locks

As the synchronization hardware solution is not easy to implement for everyone, a strict software

approach called Mutex Locks was introduced. In this approach, in the entry section of code, a LOCK

is acquired over the critical resources modified and used inside the critical section, and in the exit section

that LOCK is released.

