
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

ATTRIBUTE GRAMMARS

An attribute grammar is a formal way to supplement a formal grammar with semantic

information processing. Semantic information is stored in attributes associated with terminal and

nonterminal symbols of the grammar. The values of attributes are result of attribute evaluation

rules associated with productions of the grammar. Attributes allow to transfer information from

anywhere in the abstract syntax tree to anywhere else, in a controlled and formal way

Attribute grammars (AGs) have additions to CFGs to carry some semantic info on parse.

In simple applications, such as evaluation of arithmetic expressions, attribute grammar may be

used to describe the entire task to be performed besides parsing in straightforward way; in

complicated systems, for instance, when constructing a language translation tool, such as a

compiler, it may be used to validate semantic checks associated with a grammar, representing the

rules of a language not explicitly imparted by the syntax definition. It may be also used by parsers

or compilers to translate the syntax tree directly into code for some specific machine, or into some

intermediate language.

Definition:

 An attribute grammar is a context-free grammar G = (S, N, T, P) with the following

additions:

 For each grammar symbol x there is a set A(x) of attribute values

 Each rule has a set of functions that define certain attributes of the non-terminals

in the rule

 Each rule has a (possibly empty) set of predicates to check for attribute consistency

 Let X0 → X1 ... Xn be a rule

 Functions of the form S(X0) = f(A(X1), ... , A(Xn)) define synthesized attributes

 Functions of the form I(Xj) = f(A(X0), ... , A(Xn)), for i <= j <= n, define inherited

attributes Initially, there are intrinsic attributes on the Leaves

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Syntax rule:

<proc_def> → procedure <proc_name>[1]

<proc_body> end <proc_name>[2];

Predicate:

<proc_name>[1]string == <proc_name>[2].string

Syntax

<assign> → <var> = <expr>

<expr> → <var> + <var> | <var>

<var> → A | B | C

•actual_type: synthesized for <var> and <expr>

•expected_type: inherited for <expr>

Syntax rule: <expr> → <var>[1] + <var>[2]

Semantic rules:

<expr>.actual_type ← <var>[1].actual_type

Predicate:

<var>[1].actual_type == <var>[2].actual_type

<expr>.expected_type == <expr>.actual_type

Syntax rule:

<var> → id Semantic rule: <var>.actual_type ← lookup (<var>.string)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

How are attribute values computed?

– If all attributes were inherited, the tree could be decorated in top-down order.

– If all attributes were synthesized, the tree could be decorated in bottom-up order.

– In many cases, both kinds of attributes are used, and it is some combination of top-down and

bottom-up that must be used.

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A)

<var>[2].actual_type ← lookup (B)

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type

<expr>.actual_type =?<expr>.expected_type

Parse Tree

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Computing Attribute Values

1. <var>.actual_type ← look-up(A) (Rule 4)

2. <expr>.expected_type ← <var>.actual_type (Rule 1)

3. <var>[2].actual_type ← look-up(A) (Rule 4)

<var>[3].actual_type ← look-up(B) (Rule 4)

4. <expr>.actual_type ← either int or real (Rule 2)

5. <expr>.expected_type == <expr>.actual_type is either TRUE or FALSE (Rule 2)

Flow of Attributes in the Tree

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

A Fully Attributed Parse Tree

