1. 2. Propositional Equivalences

Logical Equivalences or Equivalence Rules

Laws	Formulae
Idempotent Laws	$p \land p \Leftrightarrow p, p \lor p \Leftrightarrow p$
Associative Laws	$(p \land q) \land r \Leftrightarrow p \land (q \land r)$
	$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
Commutative Laws	$p \land q \Leftrightarrow q \land p$
3 12	$p \lor p \Leftrightarrow q \lor p$
DeMorgan's Laws	$\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$
E\\(\(\)	$\neg(p \lor q) \Leftrightarrow (\neg p \land \neg q)$
Distributive Laws	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
Complement Laws	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
Complement Laws	$p \land \neg p \Leftrightarrow F, p \lor \neg p \Leftrightarrow T$
Dominance Laws OBSERVE OF THE	$p \lor T \Leftrightarrow T, p \land F \Leftrightarrow F$
Identity Laws	$p \wedge T \Leftrightarrow p, p \vee F \Leftrightarrow p$
Absorption Laws	$p \lor (p \land q) \Leftrightarrow p$
	$p \land (p \lor q) \Leftrightarrow p$
Double Negation Laws	$\neg(\neg p) \Leftrightarrow p$
Contra Positive Laws	$p \to q \Leftrightarrow \neg q \to \neg p$

Conditional as Disjunction	$p \to q \Leftrightarrow \neg p \lor q$
Biconditional as Conditional	$p \to q \Leftrightarrow (p \to q) \land (q \to p)$
Exportations laws	$p \to (q \to r) \Leftrightarrow (p \land q) \to r$

1.Determine whether $(\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$ is a tautology.

Solution:

$(\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$	Reason
$\Rightarrow (\neg Q \land (\neg P \lor Q)) \lor \neg P$	$P \rightarrow Q \Leftrightarrow \neg P \lor Q$
$\Rightarrow \neg(\neg Q \land (\neg P \lor Q)) \lor \neg P$	$P \to Q \Leftrightarrow \neg P \lor Q$
$\Rightarrow (Q \lor (P \land \neg Q)) \lor \neg P$	(DeMorgan's law)
$\Rightarrow ((Q \lor P) \land (Q \lor \neg Q)) \lor \neg P$	(Distributive law)
$\Rightarrow ((Q \lor P) \land T) \lor \neg P \downarrow_{A_{M_1,M_2}}$	$P \lor \neg P \Leftrightarrow T$
$\Rightarrow (Q \lor P) \lor \neg P$	
$\Rightarrow (Q \lor P \lor \neg P) O_{BSERVE} OPTIM$ $\Rightarrow (Q \lor T)$	(Associative law)
$\Rightarrow (Q \lor T)$	$P \lor \neg P \Leftrightarrow T$
$\Rightarrow T$	$P \lor T \Leftrightarrow T$

2. Show that the formula $Q \lor (P \land \neg Q) \lor (\neg P \land \neg Q)$ is a tautology.

Solution:

$Q \lor (P \land \neg Q) \lor (\neg P \land \neg Q)$	Reason
$\Rightarrow Q \lor (P \lor \neg P) \land \neg Q$	(Distributive law)
$\Rightarrow (Q \lor (P \lor \neg P)) \lor (Q \lor \neg Q)$	(Distributive law)
$\Rightarrow (Q \lor T) \land T$ ENGIN	$P \lor \neg P \Leftrightarrow T$
0,	$P \lor T \Leftrightarrow P$
$\Rightarrow T \wedge T$	

3. Show that the formula $(P \land Q) \rightarrow (P \lor Q)$ is a tautology.

Solution:

$(P \land Q) \to (P \lor Q)$	Reason
$\Rightarrow \neg (P \land Q) \lor (P \lor Q)$	$P \to Q \Leftrightarrow \neg P \lor Q$
$\Rightarrow (\neg P \lor \neg Q) \lor (P \lor Q)$	(DeMorgan's law)
$\Rightarrow (P \lor \neg P) \lor (Q \lor \neg Q)$	(Associative law)
⇒ T ∨ T = T OBSERVE OPTIM	(Negation law)

4. Show that the formula $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$

Solution:

$(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R)$	Reason
$\Rightarrow (\neg P \land (\neg Q \land R)) \lor ((Q \lor P) \land R)$	(Distributive law)
$\Rightarrow ((\neg P \land \neg Q) \land R) \lor ((Q \lor P) \land R)$	(Associative law)
$\Rightarrow [(P \vee \neg Q) \vee (Q \vee P)] \wedge R$	(Distributive law)
$\Rightarrow [\neg (P \lor Q) \lor (P \lor Q)] \land R \qquad \qquad$	(DeMorgan's law)
$\Rightarrow T \wedge R$	$P \vee \neg P \Leftrightarrow T$
⇒ R	$P \wedge T \Leftrightarrow P$

Equivalence

Two statement formulas A and B are equivalent iff $A \leftrightarrow B$ or $A \rightleftharpoons B$ is a tautology. It is denoted by the symbol $A \Leftrightarrow B$ which is read as "A is equivalent to B."

Remark:

To prove two statement formulas A and B are equivalent, we can use any one of the following method:

OBSERVE OPTIMIZE OUTSPREAD

- (i) using Truth Table, we show that truth values of both statements formulas A and B are same for each 2^n combinations.
- (ii) Assume A. By applying various equivalence rules try to derive B and vice versa.

(iii) Prove $A \leftrightharpoons B$ is a tautology.

1. Show that $\neg (P \lor (\neg P \land Q)) \& \neg P \land \neg Q$ are logically equivalent.

Solution:

$\neg (P \lor (\neg P \land Q))$	Reason
$\Leftrightarrow \neg P \land (\neg (\neg P \land \neg Q))$	(DeMorgan's law)
$\Leftrightarrow \neg P \land [\neg (\neg P) \lor \neg Q]$	(DeMorgan's law)
$\Leftrightarrow \neg P \land (P \lor \neg Q)$	(Double Negation law)
$\Leftrightarrow (\neg P \land P) \lor (\neg P \land \neg Q) \qquad \qquad \Diamond \qquad \Diamond$	(Distributive law)
$\Leftrightarrow F \lor (\neg P \land \neg Q)$	$\neg P \land P \Leftrightarrow F$
$\Leftrightarrow (\neg P \land \neg Q) \lor F$	(Commutative law)
$\Leftrightarrow \neg P \land \neg Q$	(identity law)

Hence $\neg (P \lor (\neg P \land Q)) \& \neg P \land \neg Q$ are logically equivalent. 2. Prove that $P \to Q \Leftrightarrow P \to (P \land Q)$

Solution:

$P \to (P \land Q)$	Reason

$\Leftrightarrow \neg P \lor (P \land Q)$	(Conditional as disjunction)
$\Leftrightarrow (\neg P \lor P) \land (\neg P \land Q)$	(Distributive law)
$\Leftrightarrow T \wedge (\neg P \wedge Q)$	$\neg P \land P \Leftrightarrow F$
$\Leftrightarrow \neg P \land Q$	(Identity law)
$\Leftrightarrow P \to Q$ ENGINEE	(Conditional as disjunction)

3. Prove that $(P \to R) \land (Q \to R) \Leftrightarrow (P \lor Q) \to R$ Solution:

Reason
(Conditional as disjunction)
(Distributive law)
(DeMorgan's law)
(Conditional as disjunction)

4. Prove that $P \to (Q \to R) \Leftrightarrow (P \land Q) \to R$

Solution:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

$P \to (Q \to R)$	Reason
$\Leftrightarrow \neg P \lor (Q \to R)$	(Conditional as disjunction)
$\Leftrightarrow \neg P \lor (\neg Q \lor R)$	(Conditional as disjunction)
$\Leftrightarrow \neg(\neg P \lor \neg Q) \lor R$	(Associative law)
$\Leftrightarrow \neg (P \land Q) \lor R$ ENGINEE	(DeMorgan's law)
$\Leftrightarrow (P \land Q) \to R$	(Conditional as disjunction)

