ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY

 Approved by AICTE \& Affliated to anna university Accredited with A $^{+}$grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERINGNAME OF THE SUBJECT: ENGINEERING MECHANICS SUBJECT CODE : ME3351
REGULATION 2021

UNIT II: STATICS OF RIGID BODIES IN TWO DIMENSIONAL

Statics of Rigid bodies Force couple system
Moment of a Force:-

Moment of a Force about a point is defined as the product of the force and the perpendicular distance of the line of action of the force from the point
$M=F \times d$
$F=$ Force
$d=$ perpendicular distance
The clockwise direction of moment is positive direction of moment

The Anticlockwise bending moment gives the negative direction of moment

Coupled force:
It is a turning effect produce in the body of object by applying two forces having same magnitude put in opposite Direction.

Two forces F and -F having the same magnitude, parallel lines of action and opposite sense are said to form a couple.

Types of couple:

1. clock wise couple
2.

Anti- clockwise couple

$\theta=90^{\circ}$

$\Sigma F_{H}=0$
$-R V A-R V B=0$
$\Sigma F V=0$
$R V_{A}-500=0$
$R V_{A}=500 \mathrm{~N}$
$\sum M_{A}=0$
$[500 \times 500]+\left[-R V_{B} \times 600\right]=0$
$250 \times 103=R V_{B} \times 600=0$
$-R V_{B}=-250 \times 103$
$R V_{B}=\frac{-250 \times 10^{3}}{-600}$
$R V_{B}=416.66 \mathrm{~N}$
R_{VB} Sub in Eqn (1)
$-R H_{A}-R H_{B}=0$
$R H_{A}=-416.66 \mathrm{~N}$
Problem:
Determine the support and reaction at A and B

Given

Free body diagram

$-1019.61 R V_{B}=-250 \times 103$
$R V_{B}=\frac{-250 \times 10^{3}}{-1019.61}$
$R V_{B}=245.19 \mathrm{~N}$
Sub in Eqn ------ (1)
$-R H_{A}-R V_{B} \cos 30=0$
$-R H_{A}=-R V_{B} \cos 30=-245.19 \cos 30$
$R H_{A}=212 \mathrm{~N}$
$R V_{A}$ Sub in (2)
$R V_{A}+\sin 30=500$
$R V_{A}=-R V_{B} \sin 30+500$
$R V_{A}=-245.19 \times \sin 30+500$
$R V_{A}=-122.5+500$
$R V_{A}=377.5 \mathrm{~N}$
$R V_{B}=\frac{-250 \times 10^{3}}{-1000}$
$R V_{B}=250 \mathrm{~N}$
$R V_{A}+R V_{B}=500--->R V_{A}=500-250$
$R V_{A}=250 N$
ii) when $\theta=60^{\circ}$

$\sum F_{H}=0$
$-R H_{A}-R V_{B} \cos 30=0$
$\sum F_{v}=0$
$R V_{A}-500+\operatorname{Sin} 30=0$
$R V_{A}+R V_{B} \operatorname{Sin} 30^{\circ}=500$
$\sum M_{A}=0$
$\left.\sum M_{A}=[500 \times 500]+R V_{B} \cos 30 \times 600\right]+\left[-R V_{B} \sin 30^{\circ} \times 1000\right]$
$\sum M_{A}=250 \times 10^{3}-R V_{B} 519.61-R V_{B} 500=0$
$250 \times 10^{3}-01019.61 R V_{B}=0$
Problem:
A Frame supported at A and B is subjected to force 500 N as shown in fig compute the Reaction the support for the cases i) $\theta=90^{\circ} \theta=60^{\circ}$

Given $\theta=0^{\circ} \theta=90^{\circ} \theta=60^{\circ}$

To find
Reaction at the support
i) $\theta=0^{0}$
$\sum F_{H}=0$
$R H_{A}=0$
$\sum F_{V}=0$
$-500+R V_{B}+R V_{A}=0$
$\mathrm{R} V_{A}+\mathrm{R} V_{B}=500----->(1)$
$\sum M_{A}=0$
$[500 \times 500]+\left[R V_{B} \times 1000\right]=100$
$250 \times 10^{3}-1000 R V_{B}=0$
$-1000 R V_{B}=-250 \times 10^{3}$
To find reaction ' R '
$\sum F_{H}=0$

$$
\begin{aligned}
& -R H_{R}-F_{P Q} \cos 25^{\circ}=0 \\
& -R H_{R}=F_{P Q} \cos 25^{\circ} \\
& R H_{R}=-F_{P Q} \cos 25^{\circ} \\
& R H_{R}=-\times 3 \times \cos 25 \\
& R H_{R}=2.45 N \\
& \sum F_{V}=0 \\
& R V_{R}-4-F P_{Q} \sin 23=0 \\
& R V_{R}-4-3 \times 25^{\circ}=0 \\
& R V_{R}=4+3 \sin 25^{\circ} \\
& R V_{R}=5.26 \mathrm{~N} \\
& \sqrt{\left[R H_{R}\right]^{2}+\left[R V_{R}\right]^{2}} \\
& \mathrm{R}=\sqrt{(2.45)^{2}(5.26)^{2}} \\
& R=5.80 \mathrm{~N} \\
& \theta=\tan ^{-1}\left(\frac{\sum R_{H}}{\sum R_{V}}\right) \\
& \theta=\tan ^{-1} \frac{5.26}{2.43} \\
& \theta=65^{0}
\end{aligned}
$$

Problem:
4000 N load acts on the beam held by a cable PQ as shown in fig. The weight of the beam can be neglected. Draw the free body diagram of the beam and find tension in cable PQ. Also find the reaction force at R

To find:

1. Free body diagram
2. Tension in cable PQ
3. Reaction on Force R

Soln:

1. Free body diagram:

2. Tension in cable 'PQ'

Moment at point ' R '

$$
\begin{aligned}
\sum M_{R}=[4 \times & \left.\sin 35^{\circ}\right] \\
& +\left[-F_{P Q} \cos 25^{\circ} \times 6 \cos 35^{\circ}\right]+\left[F_{P Q} \sin 25^{\circ} \times 6 \sin 35^{\circ}\right]=0
\end{aligned}
$$

$\sum M_{R}=9.177-F_{P Q} \times 4.454+1.45 F_{P Q}=0$

$$
\begin{aligned}
& -4.45 F_{P Q}+1.45 F_{P Q}=-9.177 \\
& -3 F_{P Q}=-9.177 \\
& F_{P Q}=\frac{-9.177}{-3} \\
& F_{P Q}=3 N
\end{aligned}
$$

Procedure for finding out the resultant of non current coplander force system:

1. Resolve the given forces, if they are inclined to reference x and y Axis.
2. Find the sum of horizontal component of forces $\sum F H$
3. Find the sum of vertical component of forces $\sum F V$
4. 4. Calculate the resultant force $\mathrm{R}=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.}$
1. Angle of inclination of resultant $\theta=\tan ^{-1}\left[\frac{\sum F V}{\sum F H}\right]$
2. If the force moment system is converted into a single force, coordinate position is given by

$$
\begin{aligned}
& \sum M_{o}=R \times x \\
& \sum M_{o}=\sum F_{v} \times x \\
& \sum M_{o}=\sum F_{H} \times y
\end{aligned}
$$

A plate os acted upon by three force and two couple as shown in fig. determine the resultant of these force couple system and find co-ordinate x of the point on the x axis through which the resultant is passed

Given

Three force $1.5 K N, 2 K N, 3 K N$
Two couple $100 \mathrm{~N} . \mathrm{m} 80 \mathrm{~N} . \mathrm{m}$
To find
Resultant force, location
Soln:
Resultant force $\mathrm{R}=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.}$

Sum of horizontal
$\sum F_{H}=0$
$\sum F_{H}=1.5-3$
$\sum F_{H}=-1.5 K N 1$
Sum of vertical force $\sum F v=0$
$\sum F_{V}=-2 K N$
Resultant $R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)\right.\right.}$

$$
R=\sqrt{[-1.5]^{2}[-2]^{2}}
$$

$R=2.5 \mathrm{KN}$
$\theta=\tan ^{-1}\left[\frac{\sum F_{V}}{\sum F_{V}}\right]=\tan ^{-1}\left[\frac{-2}{-1.5}\right]$
$\theta=53.13^{\circ}$

To locate the resultant
By varigon's Thorem $\quad \downarrow+\uparrow-$
$\sum M_{o}=R \times x$ and $\sum M_{o}=\sum F_{y} \times x$
$\sum M_{o}=[3 \times 0.3]+[-2 \times 0.5]+[-1.5 \times 0.2]+[-0.1]+[-0.08]=0$
$\sum M_{O}=-0.58 K N . M$
$\sum M o=0.58 K N . M$ [clock wise]
The co-ordinate x of the point through which the resulted passes is given by
$\sum \mathrm{Mo}=\sum F Y \times x$

$$
x=\frac{0.58}{2}
$$

$0.58=2 \times x$
$x=0.29 \mathrm{~m}$
$x=290 \mathrm{~mm}$
we want to find the intersection
$\sum M_{o}=\sum F_{H} \times y$
$0.581 .5 \times y$
$y=0.387 m$
The three forces and a couple shown below are applied to an angel bracket
(i) Find he Resultant of this system of forces
(ii) Locate the points where the line o action of the resultant intersects line $A B$ and the line BC

Soln
Free body diagram

1. Sum of Horizontal force

$$
\sum F_{H}=0
$$

$$
\stackrel{+}{\rightarrow}
$$

$\sum F_{H}=+125 \cos 60-200=0$
$\sum F_{H}=-137.5 N$
2. Sum of Vertical Force
$\sum F_{V}=0 \downarrow-\uparrow+$
$\sum F_{V}=-50+125 \sin 60=0$
$\sum F_{V}=58.25$
3. Resultant force' R '

$$
\begin{aligned}
& R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.} \\
& R=\sqrt{[-137.5]^{2}+[58.23]^{2}} \\
& R=149.32 N
\end{aligned}
$$

4. Direction of Resultant force α
$\alpha=\tan ^{-1}\left(\frac{\sum F V}{\sum F V}\right)$
$\alpha=\tan ^{-1}\left(\frac{58.25}{137.5}\right)$
$\alpha=22^{\circ} 57^{\prime}$

Location of Resultant Force:
By Varigon's Theorem
$\sum M_{A}=\sum F_{V} \times x$ and $\sum M_{A}=\sum F_{H} \times y$
$\sum M_{A}=(200 \times 0.2)+(-125 \sin 60 \times 0.3)-80: 0$
$\sum M_{A}=40-32.47-80$
$\sum M_{A}=-7.5 N . m$
$\sum M_{A}=\sum F_{V} \times x$

$$
\begin{aligned}
& 7.5=58.25 \times x \\
& x=7.5 / 58.25=0.12 \mathrm{~m} \\
& x=128.75 \mathrm{~mm} \\
& \sum M_{A}=\sum F_{v} \times y \\
& 7.5=137.25 \times y \\
& y=7.5 / 137.25=0.05 \mathrm{~m} \\
& y=54.64 \mathrm{~mm}
\end{aligned}
$$

Problem:

A system of forces acts as shown in fig.find the magnitude of A and B so that resultant of the force system passes through P and Q

To Find:
Forces acts on A and B
Soln: Free body diagram

The resultant forces passes through P and Q is moment About pis zero and also moment about $\mathrm{Q}=0$

It only means that the algebraic sum of moment about P and Q is equal to zero

$$
\begin{array}{ll}
\sum M_{P}=0 & \downarrow+\uparrow- \\
\sum M_{P}=(& +B \cos 40 \times 1.5) \\
& +(300 \cos 45 \times 1.5)+350 \\
& +(-A \sin 30 \times 4.5)+(-A \cos 30 \times 1.5)=0
\end{array}
$$

$$
\sum M_{P}=1.149 B+318.19350-2.25 A-1.29
$$

$$
\Sigma M_{P}=1.49 B+668.19-3.54 A=0
$$

$$
\begin{equation*}
-3.54 A+1.149 B=-668.19 \tag{1}
\end{equation*}
$$

$\sum M_{Q}=0 \quad \downarrow+\uparrow-$
$\sum M_{Q}=(B \cos 40 \times 3)+(-B \sin 40 \times 2.25)+(-300 \sin 45 \times 2.25)+350+$ ($-A$ sin
$30 \times 2.25)=0$
$2.29 B-1.44 B-477+350-1.125 A=0$
$0.85 B-127-1.125 A=0$
$-1.25 A+0.85 B=127-------->$
Solve $1 \& 2$
$-3.54 A+1.149 B=-668.19$
$-1.125 A+0.85 B=127$ \qquad
(1) $\times 1.25 \Rightarrow \gg-3.982 A+1.292 B=-751.7$
(2) $\times 3.54=>3.982 A+(-) 3.009 B=<->449.58$

$$
-171 B=-1201.29
$$

$$
\begin{aligned}
& B=(-1201.29) /(-1.71) \\
& B=702.508 \mathrm{~N}
\end{aligned}
$$

B Value substituting in Eqn (1)
$-3.54 A+1.149 \times 702.508=-668.19$
$-3.54 A+807.182=-668.19$
$-3.54 A=-668.19-807.182$
$-3.54 A=-1475.37$
$A=(-1475.37) /(-3.54)$
$A=416.77 \mathrm{~N}$
Result:-
Force on $A=416.77 \mathrm{~N}$
Force on $B=702.508 \mathrm{~N}$
Take moment about ' A '
$\sum M_{A}=0$
$\sum M_{A}=(500 \times 11)+(-200 \times 7)+(1200 \times 5)+(-300 \times 2)$
$\sum M_{A}=5500=1400+6000-600$
$\sum M_{A}=9500$ N.m
By varignon's theorem
$\sum M_{A}=R \times x$
$9500=1200 \times x$
$x=7.91 m$

Force couple systemant 'A'

Couple at $A=1200 \times 7.91$
$A=9492 \mathrm{~N} . \mathrm{m}$
Couple system at B

Problem:
A plate ABCD in the shape of parallelogram is acted upon the two couples, as shown in the fig. Determine the angle B if the resultant couple is 1.8 N.m clockwise

Given:
Resultant couple $=1.8 \mathrm{~N} . \mathrm{m}$
Free body diagram

Distance of $A E=A B+B E$
$A B=1.05 \mathrm{~m}$
To find BE
$\tan \beta=\frac{C E}{B E}=\frac{0.4}{B E}$
$B E=0.4 / \tan \beta$
$A E=A B+B E$
$A E=1.05+\frac{0.4}{\tan \beta}$
Given the resultant couple $\sum M_{A}=1.8 N . M$
Take moment about A
$\sum M_{A}=[-21 \times 0.4]+[-12 \cos \beta \times 0.4]+[12 \sin \beta \times A E]$
$\sum M_{A}=1.8 \mathrm{~N} . \mathrm{M}$
$1.8=-8.4-4.8 \cos \beta+12 \sin \beta \times\left[1.05+\frac{0.4}{\tan \beta}\right]$
$1.8=-8.4-4.8 \cos \beta+12.6 \sin \beta+\frac{4.8}{\frac{\sin \beta}{\cos \beta}} \sin \beta \quad \tan \theta=\frac{\sin \theta}{\cos \theta}$
$1.8=-8.4-4.8 \cos \beta+12.6 \sin \beta+4.8 \cos \beta$
$1.8+8.4=-4.8 \cos \beta+12.6 \sin \beta+4.8 \cos \beta$
$10.2=12.6 \sin \beta$
$\operatorname{Sin} \beta=\frac{10.2}{12.6}$
$B=\sin -1\left(\frac{10.2}{12.6}\right) \quad B=54^{\circ}$

Problem

Four tugboats are used to bring an ocan large ship to us pier. Each tugboat exerts a 22.5 KN force in direction as shown in fig (i) determine the equivalent force couple system at ' o '

(ii) Determine a single equivalent force and its location along the longitudinal axis of the ship

Soln: Free body diagram

$\sum \mathrm{F}_{H}=22.5 \cos 60+22.5 \cos +53^{\circ}+22$
$\sum F_{H}=40.65 \mathrm{KN}$
$\Sigma F_{v}=-22.5 \sin 60-22.5+\sin 53^{\circ}+22.5 \sin 45-22.5$
$\Sigma F_{v}=-44.04 N$
Resulant $\mathrm{R}=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.}$
$R=\sqrt{[40.6 .5]^{2}+[-44.04]^{2}}$
$R=59.95 \mathrm{KN}$
Direction $\theta=\tan ^{-1}\left(\frac{\Sigma \mathrm{~F}_{V}}{\Sigma F_{H}}\right)=\tan ^{-1}\left[\frac{44.04}{40.65}\right]=47^{\circ} 3^{\prime}$
To find location:
$\sum M_{o}=R \times x$
$\sum M_{o}=(22.5 \cos 60 \times 15)+(-22.5 \sin 60 \times 27)+\left(22.5 \sin 53^{\circ} \times 30\right)+$
$\left(22.5 \cos 53^{\circ} 31 \times 21\right)+(22.5 \times 120)+(-22.5 \cos 45 \times 21)+(-22.545$ $\times 90$)
$\sum M_{o}=(11.25 \times 15)+(-19.48 \times 27)+(17.99 \times 30)+(13.5 \times 21)+$ $(22.5 \times 120)+(-15.9 \times 21)+(-15.9 \times 90)$
$\sum M_{o}=1319.5 \mathrm{KN} . \mathrm{m}$
Location
$\sum M_{o}=1319.5$
$\sum M_{o}=R \times x$
$x=1319 / 59.95$
$x=22.01 m$

Magnitude of couple
$M=R \times x$
$=59.95 \times 22.01 \mathrm{~m}$
$M=1319.55 \mathrm{KN} . \mathrm{m}$

