

FUNDAMENTAL PROGRAMMING

Java Comments

The java comments are statements
interpreter. The comments can be used to provide information or explanation about the
variable, method, class or any statement. It can also be used to hide program code for
specific time.

Types of Java Comments

There are 3 types of comments

1. Single Line Comment

2. Multi Line Comment

3. Documentation Comment

1) Java Single Line Comment

The single line comment is used to
with a // and ends at the end of the

Syntax
//Comment

2) Java Multi Line Comment

This type of comment must begin with /* and end with */. Anything between these two
comment symbols is ignored by the compiler. A multiline comment may be several lines
long.

Syntax
/*Comment starts

continues

continues

.

.

.

Commnent ends*/

3) Java Documentation Comment

This type of comment is used
documentation comment begins

ROHINI COLLEGE OF ENGINEERING AND

PROGRAMMING STRUCTURES IN JAVA

statements that are not executed by the compiler
interpreter. The comments can be used to provide information or explanation about the
variable, method, class or any statement. It can also be used to hide program code for

comments in java.

Comment

Comment

used to comment only one line. A single-line comment
at the end of the line.

Syntax Example
//This is single line comment

Comment

This type of comment must begin with /* and end with */. Anything between these two
comment symbols is ignored by the compiler. A multiline comment may be several lines

Syntax Example
starts /* This is a

multi line

comment */

ends*/

Comment

used to produce an HTML file that documents our program.
comment begins with a /** and ends with a */.

 TECHNOLOGY

compiler and
interpreter. The comments can be used to provide information or explanation about the
variable, method, class or any statement. It can also be used to hide program code for

comment begins

This type of comment must begin with /* and end with */. Anything between these two
comment symbols is ignored by the compiler. A multiline comment may be several lines

program. The

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391-OBJECT ORIENTED PROGRAMMING

Syntax Example

/**Comment start /**

* This

*tags are used in order to specify a parameter is

*or method or heading documentation

*HTML tags can also be used comment

*such as <h1> */

*

comment ends/

 DATA TYPES

Java is a statically typed and also a strongly typed language. In Java, each type of data
(such as integer, character, hexadecimal, etc.) is predefined as part of the programming
language and all constants or variables defined within a given program must be described
with one of the data types.

Data types represent the different values to be stored in the variable. In java, there are two
categories of data types:

o Primitive data types

o Non-primitive data types

Figure: Data types in java

The Primitive Types

Java defines eight primitive types of data:
and boolean. The primitive types are also commonly referred to as simple types and they
are grouped into the following four groups:

i) Integers - This group includes byte, short, int, and long. All of these are si
positive and negative values.
as shown in the following

Name Width in bits
long 64 –

int 32 –

short 16 –

byte 8 –

Table: Integer Data Types

ii) Floating-point numbers
float and double, which
The width and ranges of

Name Width
double 64
float 32

iii) Characters - This group includes char, which represents symbols in a character set,
like letters and numbers. char is a 16
There are no negative chars.

iv) Boolean - This group includes boolean. It can have only one of two po
true or false.

 VARIABLES

A variable is the holder that can hold the value while the java program is executed
A variable is assigned with a datatype. It is name of
other words, it is a name of memory location
local,instance and static.

A variable provides us with named storage that our programs can manipulate. Each
variable in Java has a specific type, which determines the size and layout of t
memory; the range of values
operations thatcan be applied to

ROHINI COLLEGE OF ENGINEERING AND

Java defines eight primitive types of data: byte, short, int, long, char, float, double,
The primitive types are also commonly referred to as simple types and they

following four groups:

This group includes byte, short, int, and long. All of these are si
values. The width and ranges of these integer types vary

the following table:

Range
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

–2,147,483,648 to 2,147,483,647

–32,768 to 32,767

–128 to 127

numbers – They are also known as real numbers. This group
 represent single- and double-precision numbers, respectively.

of them are shown in the following table:

Table: Floating-point Data Types

Width in bits Range
4.9e–324 to 1.8e+308
1.4e–045 to 3.4e+038

This group includes char, which represents symbols in a character set,
like letters and numbers. char is a 16-bit type. The range of a char is 0 to 65,536.

chars.

This group includes boolean. It can have only one of two possible values,

holder that can hold the value while the java program is executed
A variable is assigned with a datatype. It is name of reserved area allocated in memory

name of memory location. There are three types of variables in java:

A variable provides us with named storage that our programs can manipulate. Each
variable in Java has a specific type, which determines the size and layout of the variable’s

values that can be stored within that memory; and
applied to the variable.

 TECHNOLOGY

byte, short, int, long, char, float, double,
The primitive types are also commonly referred to as simple types and they

This group includes byte, short, int, and long. All of these are signed,
vary widely,

9,223,372,036,854,775,807

group includes
respectively.

This group includes char, which represents symbols in a character set,
bit type. The range of a char is 0 to 65,536.

ssible values,

holder that can hold the value while the java program is executed.
reserved area allocated in memory. In

. There are three types of variables in java:

A variable provides us with named storage that our programs can manipulate. Each
he variable’s
 the set of

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391-OBJECT ORIENTED PROGRAMMING

Before using any variable, it must be declared. The following statement expresses the
basic form of a variable declaration –

datatype variable [= value][, variable [= value] ...] ;

Here data type is one of Java’s data types and variable is the name of the variable. To de-
clare more than one variable of the specified type, use a comma-separated list.

Example

int a, b, c; // Declaration of variables a, b, and c.

int a = 20, b = 30; // initialization

byte B = 22; // Declaratrion initializes a byte type variable B.

Types of Variable

There are three types of variables in java:

 local variable

 instance variable

 static variable

Local Variable

Fig. Types of variables

 Local variables are declared inside the methods, constructors, or blocks.

 Local variables are created when the method, constructor or block is entered

 Local variable will be destroyed once it exits the method, constructor, or block.

 Local variables are visible only within the declared method, constructor, or block.

 Local variables are implemented at stack level internally.

 There is no default value for local variables, so local variables should be declared and
an initial value should be assigned before the first use.

 Access specifier cannot be used for local variables.

Instance Variable

 A variable declared inside
variable.Instance variables are declared in a class, but outside a method, constructor
or any block.

 A slot for each instance
an object in the heap.

 Instance variables are created
‘new’ and destroyed when

 Instance variables hold
method, constructor or block,
present throughout the class.

 Instance variables can

 Access modifiers can be

 The instance variables are
class. It is recommended to make these variables as private. However, visibility for
subclasses can be given

 Instance variables have

○ numbers, the default

○ Booleans it is false,

○ Object references

 Values can be assigned

 Instance variables cannot

 Instance variables can be
However, within static methods
should be called using the

Static variable

 Class variables also known
ina class, but outside a method,

 Only one copy of each class variable per class is created, regardless of how many
objects are created from it.

 Static variables are rarely used other than being declared as constants.
are variables that are declared as public/private, final, and static.
variables never change from their initial value.

ROHINI COLLEGE OF ENGINEERING AND

declared inside the class but outside the method, is called
.Instance variables are declared in a class, but outside a method, constructor

instance variable value is created when a space is allocated

created when an object is created with the use of the
when the object is destroyed.

hold values that must be referenced by more
method, constructor or block, or essential parts of an object’s state that must be

class.

can be declared in class level before or after use.

be given for instance variables.

variables are visible for all methods, constructors and block in the
class. It is recommended to make these variables as private. However, visibility for

be given for these variables with the use of access modifiers.

 default values.

default value is 0,

false,

 it is null.

 during the declaration or within the constructor.

cannot be declared as static.

be accessed directly by calling the variable name inside
methods (when instance variables are given accessibility),
the fully qualified name.

ObjectReference.VariableName.

known as static variables are declared with the static
method, constructor or a block.

Only one copy of each class variable per class is created, regardless of how many
are created from it.

Static variables are rarely used other than being declared as constants.
variables that are declared as public/private, final, and static.

from their initial value.

 TECHNOLOGY

method, is called instance
.Instance variables are declared in a class, but outside a method, constructor

allocated for

the keyword

more than one
or essential parts of an object’s state that must be

block in the
class. It is recommended to make these variables as private. However, visibility for

modifiers.

inside the class.
accessibility), they

static keyword

Only one copy of each class variable per class is created, regardless of how many

 Constants
variables that are declared as public/private, final, and static. Constant

 Static variables are stored in the
otherthan declared final

 Static variables are created
stops.

 Visibility is same as instance
declared public since they

 Default values are same

○ numbers, the default

○ Booleans, it is false;

○ Object references,

 Values can be assigned
values can be assigned in

 Static variables cannot be

 Static variables can be
VariableName.

 When declaring class variables as public static final, then variable names (constants)
are all in upper case. If the
is the same as instance and

 OPERATORS

Operator in java is a symbol
of operators to manipulate variables. For

All the Java operators can be

 Arithmetic Operators :

Multiplicative

Additive :

 Relational Operators

Comparison : <

Equality : ==

 Bitwise Operators

bitwise AND :

bitwise exclusive OR :

bitwise inclusive

Shift operator: <<

ROHINI COLLEGE OF ENGINEERING AND

Static variables are stored in the static memory. It is rare to use static variables
final and used as either public or private constants.

created when the program starts and destroyed when the

instance variables. However, most static variables are
since they must be available for users of the class.

same as instance variables.

default value is 0;

false;

references, it is null.

 during the declaration or within the constructor. Additionally,
in special static initializer blocks.

be local.

be accessed by calling with the class name ClassName.

When declaring class variables as public static final, then variable names (constants)
the static variables are not public and final, the naming
and local variables.

symbol that is used to perform operations. Java provides
variables. For example: +, -, *, / etc.

be divided into the following groups −

 : * / %

 + -

< > <= >= instanceof

 !=

 : &

bitwise exclusive OR : ^

inclusive OR : |

operator: << >> >>>

 TECHNOLOGY

. It is rare to use static variables

the program

are

Additionally,

ClassName.

When declaring class variables as public static final, then variable names (constants)
naming syntax

provides a rich set

 Logical Operators

logical AND :

logical OR : ||

logical NOT : ~

 Assignment Operators:

 Ternary operator: ? :

 Unary operator

Postfix : expr++

Prefix : ++expr

The Arithmetic Operators

Arithmetic operators are used
theyare used in algebra. The following

Example:

int A=10,B=20;

Operator

+ (Addition) Adds

- (Subtraction) Subtracts

* (Multiplication) Multiplies

/ (Division) Divides

% (Modulus)

Divides

hand operand

// Java program to illustrate arithmetic operators

public class Aoperators

{

public static void main(String[]

{

int a = 20, b = 10, c = 0, d

String x = “Thank”, y = “You”;

System.out.println(“a + b = “+(a +

b)); System.out.println(“a

b));

ROHINI COLLEGE OF ENGINEERING AND

logical AND : &&

||

~ !

: =

:

++ expr—

expr --expr +expr -expr

used to perform arithmetic operations in the same
The following table lists the arithmetic operators −

Description Example

 values A & B. A + B

Subtracts B from A A - B

Multiplies values A & B A * B

Divides B by A B / A

Divides left-hand operand by right-

operand and returns remainder.

B % A

// Java program to illustrate arithmetic operators

main(String[] args)

0, d = 20, e = 40, f = 30;

String x = “Thank”, y = “You”;

System.out.println(“a + b = “+(a +

b)); System.out.println(“a - b = “+(a -

 TECHNOLOGY

same way as

Output

30

-10

200

2

0

System.out.println(“x + y = “+x + y);

System.out.println(“a * b = “+(a *

b));System.out.println(“a / b = “+(a /

b));

System.out.println(“a

}

}

The Relational Operators

The following relational operators

Example:

int A=10,B=20;

Operator

== (equal to)

Checks if the values of two operands
are equal or not, if yes then condition
becomes

!= (not equal to)

Checks if the values of two operands
are equal or not, if values are not equal
then condition becomes

> (greater than)

Checks if the value of left operand is
greater than the value of right operand,
if yes

< (less than)

Checks if the value of left operand is
less than the value of right operand, if
yes then

>= (greater than or
equal to)

Checks if the value of left operand is
greater than or equal to the value of
right operand, if yes then condition be
comes

<= (less than or

equal to)

Checks if the value of left operand is
less than or equal to the value of right
operand,
true.

instance of Operator

checks
ular type

(Object
(class/interface

ROHINI COLLEGE OF ENGINEERING AND

System.out.println(“x + y = “+x + y);

System.out.println(“a * b = “+(a *

b));System.out.println(“a / b = “+(a /

System.out.println(“a % b = “+(a % b));

operators are supported by Java language.

Description Example

Checks if the values of two operands
are equal or not, if yes then condition
becomes true.

(A == B)

Checks if the values of two operands
are equal or not, if values are not equal

condition becomes true.

(A != B)

Checks if the value of left operand is
greater than the value of right operand,

yes then condition becomes true.

(A > B)

Checks if the value of left operand is
less than the value of right operand, if

then condition becomes true.

(A < B)

Checks if the value of left operand is
greater than or equal to the value of
right operand, if yes then condition be-
comes true.

(A >= B)

Checks if the value of left operand is
less than or equal to the value of right
operand, if yes then condition becomes

(A <= B)

checks whether the object is of a partic-
type (class type or interface type)

(Object reference variable) instanceof
(class/interface type)

boolean re-
sult = name
instanceof

String;

 TECHNOLOGY

Output

true

true

true

true

true

true

True

// Java program to illustrate relational

public class operators

{

public static void main(String[]

{

int a = 20, b = 10;

boolean condition =

true;

//various conditional

System.out.println(“a == b :” + (a ==));

System.out.println(“a < b :” + (a < b));

System.out.println(“a <= b :” + (a <=));

System.out.println(“a > b :” + (a > b));

System.out.println(“a >= b :” + (a >=));

System.out.println(“a

System.out.println(“condition==true

}

}

Bitwise Operators

Java supports several bitwise
short, char, and byte. Bitwise operator

Example:

int a = 60,b = 13;

binary format of a & b will be as follows

a = 0011 1100

b = 0000 1101

Bitwise operators follow the

ROHINI COLLEGE OF ENGINEERING AND

relational operators

main(String[] args)

 operators

System.out.println(“a == b :” + (a ==));

System.out.println(“a < b :” + (a < b));

System.out.println(“a <= b :” + (a <=));

System.out.println(“a > b :” + (a > b));

System.out.println(“a >= b :” + (a >=));

 != b :” + (a !=));

System.out.println(“condition==true :” + (condition == true));

bitwise operators, that can be applied to the integer types,
operator works on bits and performs bit-by-bit operation.

binary format of a & b will be as follows −

the truth table:

 TECHNOLOGY

types, long, int,
operation.

a b

0 0

0 1

1 0

1 1

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

The following table lists the bitwise

int A=60,B=13;

Operator Description

& (bit-
wise and)

Binary AND Operator copies a
bit to the result if it exists in both
operands.

| (bitwise Binary OR Operator
or) if it exists in either

^ (bitwise
XOR)

Binary XOR Operator copies the
bit if it is set in one operand but
not both.

~ (bitwise
compli-
ment)

Binary Ones Complement
tor is unary and has the effect of
‘flipping’ bits.

<< (left
shift)

The left operands value is moved
left by the number
specified by the right

ROHINI COLLEGE OF ENGINEERING AND

b a&b a|b a^b ~a

0 0 0 1 1

1 0 1 0 1

0 0 1 0 0

1 1 1 1 0

bitwise operators −

Description Example Output

Binary AND Operator copies a
bit to the result if it exists in both

(A & B) will give 12
which is

12

(in
f o r m
1100)

Operator copies a bit (A | B) 61

either operand. (in binary
0011 1101)

Binary XOR Operator copies the
bit if it is set in one operand but

(A ^ B) will give 49
which is 0011 0001

49

(in binary form:
0011 0001)

Complement Opera-
tor is unary and has the effect of

(~A) will give -61
which is 1100 0011
in 2’s complement
form due to a signed
binary number.

-61

(in binary form:
1100 0011)

The left operands value is moved
number of bits
right operand.

A << 2 will give 240
which is 1111 0000

240

(in binary form:
1111 0000)

 TECHNOLOGY

Output

 binary
 : 0 0 0 0

binary form:
1101)

(in binary form:
0001)

(in binary form:
0011)

(in binary form:
0000)

>> (right
shift)

The left operands value is moved
right by the number of bits speci
fied by the right operand.

>>> (zero
fill right

shift)

The left operands value is moved
right by the number of bits speci
fied by the right
shifted values are filled up with
zeros.

// Java program to illustrate bitwise operators

public class operators

{

public static void main(String[]

{

int a = 10;

int b = 20;

System.out.println(“a&b = “ + (a &

b));System.out.println(“a|b = “ + (a |

b)); System.out.println(“a^b = “ + (a ^

b)); System.out.println(“~a =

}

}

Logical Operators

The following are the logical

Example:

A=true;

B=false;

ROHINI COLLEGE OF ENGINEERING AND

The left operands value is moved
right by the number of bits speci-

right operand.

A >> 2 will give 15
which is 1111

15

(in binary form:
1111)

The left operands value is moved
right by the number of bits speci-

right operand and
shifted values are filled up with

A >>>2 will give 15
which is 0000 1111

15

(in binary form:
0000 1111)

// Java program to illustrate bitwise operators

main(String[] args)

System.out.println(“a&b = “ + (a &

b));System.out.println(“a|b = “ + (a |

b)); System.out.println(“a^b = “ + (a ^

System.out.println(“~a = “ + ~a);

the logical operators supported by java.

 TECHNOLOGY

(in binary form:

(in binary form:
1111)

Operator

&& (logical
and)

If both the
then the condition

|| (logical or) If any of the two operands are non
zero, then
true.

! (logical not) Use to reverses
operand. If a condition is true then
Logical NOT
false.

Assignment Operators

The following are the assignment operators

Operator

=

(Simple
assignment
operator)

Assigns
ands to left side operand.

+=
It adds right operand to the left operand
and assigns

(Add AND
assignment
operator)

-=
It subtracts right operand from the left
operand and assigns the result to left
operand.

(Subtract
AND
assignment
operator)

*=
It multiplies
operand and assigns the result to left
operand.

(Multiply
AND
assignment
operator)

ROHINI COLLEGE OF ENGINEERING AND

Description Example

the operands are non-zero,
condition becomes true.

(A && B)

If any of the two operands are non-
then the condition becomes

(A || B)

reverses the logical state of its
operand. If a condition is true then

NOT operator will make

!(A && B)

assignment operators supported by Java.

Description Example

Assigns values from right side oper-
left side operand.

C = A + B will as
sign value of

A + B into C

It adds right operand to the left operand
assigns the result to left operand.

C += A is equiva
lent to C = C +

It subtracts right operand from the left
operand and assigns the result to left
operand.

C -= A is equiva
lent to C = C –

multiplies right operand with the left
operand and assigns the result to left
operand.

C *= A is equiva
lent to C = C *

 TECHNOLOGY

Ouptput

false

true

true

as-

equiva-
 A

equiva-
 A

equiva-
 A

/=
It divides left operand with the right
operand and assigns the result to left
operand.

(Divide
AND
assignment
operator)

%=

It takes modulus using two operands
and assigns

(Modulus
AND assign-
ment opera-
tor)

<<= Left shift

>>= Right shift

&=

Bitwise

^=

bitwise exclusive
operator.

|=

bitwise inclusive
operator.

// Java program to illustrate assignment

public class operators

{

public static void main(String[]

{

int a = 20, b = 10, c, d, e = 10, f = 4, g =

9;c = b;

System.out.println(“Value

c);a += 1;

ROHINI COLLEGE OF ENGINEERING AND

It divides left operand with the right
operand and assigns the result to left
operand.

C /= A is equiva
lent to C = C / A

It takes modulus using two operands
assigns the result to left operand.

C %= A is equiva
lent to C = C %

Left shift AND assignment operator.
C <<= 2 is same as
C = C << 2

shift AND assignment operator.
C >>= 2 is same as
C = C >> 2

 AND assignment operator.

C &= 2 is same as
C = C & 2

exclusive OR and assignment
operator.

C ^= 2 is same as
C = C ^ 2

inclusive OR and assignment
operator.

C |= 2 is same as
= C | 2

assignment operators

main(String[] args)

int a = 20, b = 10, c, d, e = 10, f = 4, g =

System.out.println(“Value of c = “ +

 TECHNOLOGY

is equiva-
A

equiva-
= C % A

C <<= 2 is same as

C >>= 2 is same as

= 2 is same as

C ^= 2 is same as

as C

b -= 1;

e *= 2;

f /= 2;

System.out.println(“a,

}

}

Ternary Operator

Conditional Operator (? :)

Since the conditional operator has three operands, it is referred as the
This operator consists of three operands and is used to evaluate Boolean expressions. The
goal of the operator is to decide,
is written as –

variable x = (expression) ? value

Following is an example −

Example:

public class example

{

public static void main(String

{

int a,

b;a =

10;

b = (a == 0) ? 20: 30;

System.out.println(“b : “ +

}

}

Unary Operators

Unary operators use only one
a value.

ROHINI COLLEGE OF ENGINEERING AND

System.out.println(“a, b, e, f = “ +a + “,” + b + “,” + e + “,” + f);

Since the conditional operator has three operands, it is referred as the ternary operator
This operator consists of three operands and is used to evaluate Boolean expressions. The

decide, which value should be assigned to the variable. The

value if true : value if false

main(String args[])

+ b);

one operand. They are used to increment, decrement

 TECHNOLOGY

ternary operator.
This operator consists of three operands and is used to evaluate Boolean expressions. The

The operator

decrement or negate

Operator

- Unary minus

+ Unary plus

++ :Increment operator
— : Decrement operator

! : Logical not operator

// Java program to illustrate unary operators

public class operators

{

public static void main(String[]

{

int a = 20, b = 10, c = 0, d = 20,

boolean condition =true;

c = ++a;

System.out.println(“Value

c = b++;

System.out.println(“Value

c = --d;

System.out.println(“Value

c = --e;

System.out.println(“Value of c (

System.out.println(“Value

}

}

Precedence of Java Operators

Operator precedence determines the grouping of operands in an expression. This affects
how an expression is evaluated. Certain operators have higher precedence than others; for
example, the multiplication operator

ROHINI COLLEGE OF ENGINEERING AND

 Description

negating the values

converting a negative value to positive

 incrementing the value by 1
operator decrementing the value by 1

 inverting a boolean value

// Java program to illustrate unary operators

main(String[] args)

= 20, e = 40, f = 30;

 of c (++a) = “ +c);

 of c (b++) = “ +);

 of c (--d) = “+c);

System.out.println(“Value of c (--e) = “ + c);

 of !condition =” + !condition);

Operators

Operator precedence determines the grouping of operands in an expression. This affects
how an expression is evaluated. Certain operators have higher precedence than others; for

operator has higher precedence than the addition operator

 TECHNOLOGY

positive

Operator precedence determines the grouping of operands in an expression. This affects
how an expression is evaluated. Certain operators have higher precedence than others; for

operator

For example, the following expression,

x = 10 + 5 * 2;

is evaluated. So, the output
than +.

The following table shows the
and those with the lowest at the bottom. Within an expression, higher precedence operators
will be evaluated first.

Category

Postfix

Unary

Multiplicative

Additive

Shift

Relational

Equality

Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR

Conditional

Assignment

CONTROL FLOW

Java Control statements control the flow of execution in a java program, based on data
values and conditional logic used.

Selection statements: if, if-else

Loop statements: while, do-

Transfer statements: break,

Selection statements

The selection statements checks

ROHINI COLLEGE OF ENGINEERING AND

expression,

output is 20, not 30. Because operator * has higher

the operators with the highest precedence at the top
and those with the lowest at the bottom. Within an expression, higher precedence operators

Operator Associativity

>() [] . (dot operator) Left to right

>++ - - ! ~ Right to left

>* / Left to right

>+ - Left to right

>>> >>> << Left to right

>> >= < <= Left to right

>== != Left to right

>& Left to right

>^ Left to right

>| Left to right

>&& Left to right

>|| Left to right

?: Right to left

>= += -= *= /= %= >>=
<<= &= ^= |=

Right to left

Java Control statements control the flow of execution in a java program, based on data
used. There are three main categories of control flow

else and switch.

-while and for.

break, continue, return, try-catch-finally and assert.

checks the condition only once for the program execution.

 TECHNOLOGY

 precedence

top of the table
and those with the lowest at the bottom. Within an expression, higher precedence operators

Associativity

Java Control statements control the flow of execution in a java program, based on data
flow statements;

execution.

If Statement:

The if statement executes a block of code only if the specified expression is true. If the
value is false, then the if block is skipped and execution continues with the rest of the pro
gram.

The simple if statement has the following syntax:

if (<conditional

<statement action>

The following program explains the if statement.

public class programIF{

public static void main(String[]

{

int a = 10, b =

20;if (a > b)

System.out.println(“a >

b”);if (a < b)

System.out.println(“b <

a”);

}

}

The If-else Statement

The if/else statement is an extension
fails, the statements in the else block are executed. The if
syntax:

if (<conditional expression>)

<statement action>

else

<statement action>

The following program explains the if

public class ProgramIfElse

{

public static void main(String[]

{

ROHINI COLLEGE OF ENGINEERING AND

The if statement executes a block of code only if the specified expression is true. If the
value is false, then the if block is skipped and execution continues with the rest of the pro

The simple if statement has the following syntax:

(<conditional expression>)

action>

The following program explains the if statement.

main(String[] args)

extension of the if statement. If the condition in the
fails, the statements in the else block are executed. The if-else statement has the following

expression>)

action>

action>

The following program explains the if-else statement.

ProgramIfElse

main(String[] args)

 TECHNOLOGY

The if statement executes a block of code only if the specified expression is true. If the
value is false, then the if block is skipped and execution continues with the rest of the pro-

 if statement
else statement has the following

int a = 10, b =

20;if (a > b)

{

System.out.println(“a > b”);

}

else

{

System.out.println(“b < a”);

}

}

}

Switch Case Statement

The switch case statement is also called as multi
choices. A switch statement is easier to implement than a series of if/else statements. The
switch statement begins with a keyword, followed by an expression that equate
integral value.

After the controlling expression, there is a code block that contains zero or more labeled
cases. Each label must equate to an integer constant and each must be unique. When the
switch statement executes, it compares the valu
of each case label.

The program will select the value of the case label that equals the value of the control
ling expression and branch down that path to the end of the code block. If none of the case
label values match, then none of the codes within the switch statement code block will be
executed.

Java includes a default label to use in cases where there are no matches. A nested switch
within a case block of an outer switch is also allowed. When executing a s
the flow of the program falls through to the next case. So, after every case, you must insert a
break statement.

ROHINI COLLEGE OF ENGINEERING AND

b”);

a”);

The switch case statement is also called as multi-way branching statement with several
choices. A switch statement is easier to implement than a series of if/else statements. The
switch statement begins with a keyword, followed by an expression that equates to a no long

After the controlling expression, there is a code block that contains zero or more labeled
cases. Each label must equate to an integer constant and each must be unique. When the
switch statement executes, it compares the value of the controlling expression to the values

The program will select the value of the case label that equals the value of the control
ling expression and branch down that path to the end of the code block. If none of the case

lues match, then none of the codes within the switch statement code block will be

Java includes a default label to use in cases where there are no matches. A nested switch
within a case block of an outer switch is also allowed. When executing a switch statement,
the flow of the program falls through to the next case. So, after every case, you must insert a

 TECHNOLOGY

way branching statement with several
choices. A switch statement is easier to implement than a series of if/else statements. The

s to a no long

After the controlling expression, there is a code block that contains zero or more labeled
cases. Each label must equate to an integer constant and each must be unique. When the

e of the controlling expression to the values

The program will select the value of the case label that equals the value of the control-
ling expression and branch down that path to the end of the code block. If none of the case

lues match, then none of the codes within the switch statement code block will be

Java includes a default label to use in cases where there are no matches. A nested switch
witch statement,

the flow of the program falls through to the next case. So, after every case, you must insert a

The syntax of switch case is given

switch (<non-long integral expression>) {

case label1: <statement

case label2: <statement

…

case labeln: <statement

default: <statement>

} // end switch

The following program explains

public class ProgramSwitch

{

public static void main(String[]

{

int a = 10, b = 20, c =

30;int status = -1;

if (a > b && a > c)

{

status = 1;

}

else if (b > c)

{

status = 2;

}

else

{

status = 3;

}

switch (status)

{

case 1:System.out.println(“a

ROHINI COLLEGE OF ENGINEERING AND

given as follows:

long integral expression>) {

statement1>

<statement2>

: <statementn>

<statement>

explains the switch statement.

ProgramSwitch

main(String[] args)

1:System.out.println(“a is the greatest”);

 TECHNOLOGY

break;

case 2:System.out.println(“b is the

greatest”);break;

case 3:System.out.println(“c is the

greatest”);break;

default:System.out.println(“Cannot

}

}

}

Iteration statements

Iteration statements execute
tion is true.

While Statement

The while statement is one of the looping constructs control statement that executes a
block of code while a condition
sion evaluates to false. The loop condition must be a boolean expression
while loop is

while (<loop condition>)

<statements>

The following program explains

public class ProgramWhile

{

public static void main(String[]

{

int count = 1;

System.out.println(“Printing Numbers from 1 to

10”);while (count <= 10)

{

System.out.println(count++);}

}

}

}

ROHINI COLLEGE OF ENGINEERING AND

case 2:System.out.println(“b is the

case 3:System.out.println(“c is the

default:System.out.println(“Cannot be determined”);

execute a block of code for several numbers of times until

The while statement is one of the looping constructs control statement that executes a
condition is true. The loop will stop the execution if the testing

sion evaluates to false. The loop condition must be a boolean expression. The syntax of the

condition>)

explains the while statement.

ProgramWhile

main(String[] args)

System.out.println(“Printing Numbers from 1 to

System.out.println(count++);}

 TECHNOLOGY

until the condi-

The while statement is one of the looping constructs control statement that executes a
testing expres-

. The syntax of the

Do-while Loop Statement

The do-while loop is similar
at the end of the loop instead of at the beginning. The do
without checking the condition.

It begins with the keyword do,
loop. Finally, the keyword while and the test expression completes the do
the loop condition becomes false, the loop is terminated and execution continues with the
statement immediately following the loop.

The syntax of the do-while loop

do

<loop body>

while (<loop condition>);

The following program explains the do

public class DoWhileLoopDemo {

public static void main(String[]

{int count = 1;

System.out.println(“Printing Numbers from 1 to

10”);do {

System.out.println(count++);

} while (count <= 10);

}

}

For Loop

The for loop is a looping construct which can execute a set of instructions for a specified
number of times. It’s a counter

The syntax of the loop is as follows:

for (<initialization>; <loop

<loop body>

 initialization statement
section can also be a comma

 test expression. As long
expression is evaluated

ROHINI COLLEGE OF ENGINEERING AND

similar to the while loop, except that the test condition is
at the end of the loop instead of at the beginning. The do—while loop executes atleast once

condition.

do, followed by the statements that making up the
loop. Finally, the keyword while and the test expression completes the do-while loop. When
the loop condition becomes false, the loop is terminated and execution continues with the

immediately following the loop.

while loop is

The following program explains the do--while statement.

DoWhileLoopDemo {

main(String[] args)

System.out.println(“Printing Numbers from 1 to

System.out.println(count++);

The for loop is a looping construct which can execute a set of instructions for a specified
 controlled loop.

follows:

 condition>; <increment expression>)

 executes once before the loop begins. The <initialization>
a comma-separated list of expression statements.

long as the expression is true, the loop will continue.
 as false the first time, the loop will never be executed.

 TECHNOLOGY

is performed
while loop executes atleast once

 body of the
while loop. When

the loop condition becomes false, the loop is terminated and execution continues with the

The for loop is a looping construct which can execute a set of instructions for a specified

<initialization>

continue. If this
executed.

 Increment(Update) expression
loop body.

 All the sections in the for
the two semicolons are

The following program explains the for statement.

public class ProgramFor

{

public static void main(String[]

{

System.out.println(“Printing Numbers from 1 to10”);

for (int count = 1; count <=

{

System.out.println(count);
}

}

}

Transfer statements

Transfer statements are used
other.

Continue Statement

A continue statement stops the current iteration of a loop (while, do or for) and causes
execution to resume at the top of the nearest enclosing loop. The continue statement can be
used when you do not want to execute the remaining statements in
want to exit the loop itself.

The syntax of the continue statement is

continue; // the unlabeled form

continue <label>; // the labeled

It is possible to use a loop with a label and then use the label in the continue statement.
The label name is optional, and
loop in a series of nested loops.

The following program explains the continue statement.

public class ProgramContinue

{

public static void main(String[]

{System.out.println(“Odd Numbers”);

ROHINI COLLEGE OF ENGINEERING AND

expression that automatically executes after each repetition

for-header are optional. Any one of them can be left
 mandatory.

The following program explains the for statement.

main(String[] args)

System.out.println(“Printing Numbers from 1 to10”);

<= 10; count++)

System.out.println(count);

used to transfer the flow of execution from one statement

A continue statement stops the current iteration of a loop (while, do or for) and causes
execution to resume at the top of the nearest enclosing loop. The continue statement can be
used when you do not want to execute the remaining statements in the loop, but you do not

The syntax of the continue statement is

// the unlabeled form

labeled form

It is possible to use a loop with a label and then use the label in the continue statement.
 is usually only used when you wish to return to the

nested loops.

The following program explains the continue statement.

ProgramContinue

main(String[] args)

Numbers”);

 TECHNOLOGY

repetition of the

 empty, but

statement to an-

A continue statement stops the current iteration of a loop (while, do or for) and causes
execution to resume at the top of the nearest enclosing loop. The continue statement can be

the loop, but you do not

It is possible to use a loop with a label and then use the label in the continue statement.
the outermost

for (int i = 1; i <= 10; ++i) {

if (i % 2 == 0)

continue;

System.out.println(i + “\t”);

}

}

}

Break Statement

The break statement terminates the enclosing loop (for, while, do or switch statement).
Break statement can be used when
the enclosing control structure.
and then use the label in break statement. The label name is optional, and is usually only used
when you wish to terminate the outermost

The Syntax for break statement

break; // the unlabeled form

<label>; // the labeled form

The following program explains

public class ProgramBreak {

public static void main(String[] args) {

System.out.println(“Numbers 1

for (int i = 1;; ++i) {

if (i == 11)

break;

// Rest of loop body skipped when i is even

System.out.println(i + “\t”);

}

}

}

The transferred statements such
chapters.

ROHINI COLLEGE OF ENGINEERING AND

for (int i = 1; i <= 10; ++i) {

The break statement terminates the enclosing loop (for, while, do or switch statement).
when we want to jump immediately to the statement

 As continue statement, can also provide a loop
and then use the label in break statement. The label name is optional, and is usually only used

outermost loop in a series of nested loops.

 is as shown below;

form break

explains the break statement.

{

public static void main(String[] args) {

System.out.println(“Numbers 1 - 10”);

// Rest of loop body skipped when i is even

such as try-catch-finally, throw will be explained in

CS8392-OBJECT ORIENTED PROGRAMMING

AND TECHNOLOGY

The break statement terminates the enclosing loop (for, while, do or switch statement).
statement following

 with a label,
and then use the label in break statement. The label name is optional, and is usually only used

in the later

PROGRAMMING

