NP HARD AND NP COMPLETE PROBLEM

NP Problem:

The NP problems set of problems whose solutions are hard to find but easy to verify and are solved by Non-Deterministic Machine in polynomial time.

NP-Hard Problem:

A Problem X is NP-Hard if there is an NP-Complete problem Y , such that Y is reducible to X in polynomial time. NP-Hard problems are as hard as NP-Complete problems. NP-Hard Problem need not be in NP class.

If every problem of NP can be polynomial time reduced to it called as NP Hard.
A lot of times takes the particular problem solve and reducing different problems.

example :

1. Hamiltonian cycle .
2. optimization problem .
3. Shortest path

NP-Complete Problem:

A problem X is NP-Complete if there is an NP problem Y , such that Y is reducible to X in polynomial time. NP-Complete problems are as hard as NP problems. A problem is NPComplete if it is a part of both NP and NP-Hard Problem. A non-deterministic Turing machine can solve NP-Complete problem in polynomial time.

A problem is np-complete when it is both np and np hard combines together.
this means np complete problems can be verified in polynomial time.

Example:

1. Decision problems.
2. Regular graphs.

Difference between NP-Hard and NP-Complete:

NP-hard

NP-Hard problems(say X) can be solved if and only if there is a NP-Complete problem(say Y) that can be reducible into X in polynomial time.

NP-Complete

NP-Complete problems can be solved by a nondeterministic Algorithm/Turing Machine in polynomial time.

To solve this problem, it must be both NP and NP-hard problems.

Time is known as it is fixed in NP-Hard.

NP-Complete is exclusively a decision problem.

All NP-complete problems are NP-hard It is exclusively a Decision problem.

It is Decision problem used.

Example: Determine whether a graph has a Hamiltonian cycle, Determine whether a Boolean formula is satisfiable or not, Circuitsatisfiability problem, etc.

