
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

ARRAYS

Introduction to Arrays

 An Array is a collection of similar data elements

 These data elements have the same data type

 The elements of the array are stored in consecutive memory locations and are

referenced by an index

Definition

 An array is a data structure that is used to store data of the same type. The position

of an element is specified with an integer value known as index or subscript.

Example

Fig. 1.16 Array Structure

Characteristics

 All the elements of an array share a common name called as array name

 The individual elements of an array are referred based on their position

 The array index in c starts with 0

Advantages of C array

 Code Optimization : Less code to access the data

 Easy to traverse data : By using the for loop, we can retrieve the elements of can

array easily

 Easy to sort data: To sort the elements of array, we need a few lines of code only

 Random Access : We can access any element randomly using the array

Disadvantages of array

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Fixed Size: Whatever size, we define at the time of declaration of array, we can’t

exceed the limit. So it doesn’t grow the size dynamically like Linked List

Classifications

 In general arrays are classified as:

 One-Dimensional Array

 Two-Dimensional Array

 Multi-Dimensional Array

 Declaration of an Array

Array has to be declared before using it in C program. Declaring array means

specifying three things.

Data_type Data Type of Each Element of the array

Array_name Valid variable name

Size Dimensions of the Array

Arrays are declared using the following syntax:

Here the type can be either int, float, double, char or any other valid data type. The number

within the brackets indicates the size of the array, i.e., the maximum number of elements

that can be stored in the array.

Example: i) int marks[10]

ii) int a[5]={10,20,5,56,100}

The declaration of an array tells the compiler that, the data type, name of the array,

size of the array and for each element it occupies memory space. Like for int data type

occupies 2 bytes for each element and for float occupies 4 bytes for each element etc. The

size of the array operates the number of elements that can be stored in an array.

 Initialization of arrays

Elements of the array can also be initialized at the time of declaration as in the

case of every other variable. When an array is initialized, we need to provide a value for

every element in the array. Arrays are initialized using the following syntax:

The values are written with curly brackets and every value is separated by a comma.

type name[size]

type array_name [size] = { list of values};

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

It is a compiler error to specify more number of values than the number of elements in

the array.

Example: int marks [5] = {90, 92, 78, 82, 58};

 ONE DIMENSIONAL ARRAY

 It is also known as single-dimensional arrays or linear array or vectors

 It consists of fixed number of elements of same type

 Elements can be accessed by using a single subscript

Example

 Declaration of Single Dimensional Array

 An array must be declared before being used. Declaring an array means specifying

three things.

1. Data type

2. Name

3. Size

Syntax

Example

int a[4]; // a is an array of 4 integers

char b[6]; //b is an array of 6 characters

 Initialization of single dimensional array

 Elements of an array can also be initialized. After declaration, the array elements

must be initialized otherwise they hold garbage value. An array can be initialized

at compile time or at run time.

 Elements of an array can be initialized by using an initialization list. An

initialization list is a comma separated list of initializers enclosed within braces.

Example

datatype arrayname [array size];

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

1. int a[3]={1,3,4};

2. int i[5] ={1, 2, 3, 4, 5};

3. float a[5]={1.1, 2.3, 5.5, 6.7, 7.0};

4. int b[]={1,1,2,2};

 In the fourth example the size has been omitted (it can be) and have been declared

as an array with 4 elements having 1, 1, 2 and 2 as initial values.

 Character arrays that hold strings allow a shortcut initialization of the form:

char array_name[size]=”string”

For example,

char mess[]={‘w’,‘e’,‘l’,‘c’,‘o’,‘m’,‘e’};

 If the number of initializers in the list is less than array size, the leading array

locations gets initialized with the given values. The rest of the array locations gets

initialized to

0 - for int array

0.0 - for float array

\0 - for character array

Example

int a[2]={1};

a

char b[5]={‘A’.’r’,’r’};

b

Example Programs

Program 1.32

/*Program to find the maximum number in an array * /

#include<stdio.h>

void main()

{

int a[5], i, max;

1 0

‘A’ ‘r’ ‘r’ ‘\0’ ‘\0’

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

printf(“Enter 5 numbers one by one \n”);

for(i=0;i<5;i++)

{

scanf(“%d”, & a[i]);

}

max=a[0];

for(i=1;i<5;i++)

{

if (max<a[i])

max =a[i];

}

printf(“\n The maximum number in the array is %d”,max);

getch() ;

}

Output:

Enter 5 numbers one by one

5 7 3 6 4

The maximum number in the array is 7

Program 1.33

/*Program for reversing an array*/

#include<stdio.h>

void main()

{

int a[10], i;

int n;

printf(“Enter the maximum number of elements\n”);

scanf(“%d”, &n);

for(i=0; i<n; i++)

{

scanf(“%d”,&a[i]);

}

}

Output

printf(“Array in the reverse order\n”);

for(i=n–1; i>=0; i--)

{

printf(“%d\t”, a[i]);

}

getch();

Enter the maximum number of elements

5 11 12 13 14 15

Array in the reverse order

15 14 13 12 11

Program 1.34

/* Program to calculate sum of array content */

include<stdio.h>

void main()

{

int a[20], n, i, sum = 0;

print f(“\n Enter the size of the array:”);

scanf(“%d”, &n)

printf (“\n Enter the %d numbers one by one:”);

for (i=0; i<n; i++)

{

scanf(“%d”, &a[i]);

sum = sum + a[i];

}

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

}

Output

printf (“The sum of array content = %d”, sum);

getch();

Enter the size of the array: 5

Enter the 5 number one by one:

10 20 30 40 50

The sum oif the array content = 150

 MULTI-DIMENSIONAL ARRAY

 A multi-dimensional array is an array that has more than one dimension. It is an

array of arrays; an array that has multiple levels. The simplest multi-dimensional

array is the 2D array, or two-dimensional array and 3D or three-dimensional array.

 Two Dimensional Array

 A two dimensional array is an array of one dimensional arrays and can be

visualized as a plane that has rows and columns.

 The elements can be accessed by using two subscripts, row subscript (row

number), column subscript (column number).

 It is also known as matrix.

 A single dimensional array can store a list of values, whereas two dimensional

array can store a table of values.

Example

a[3][5]

Declaration

Example: int a [2][3]; //a is an integer array of 2 rows and 3 columns

Number of elements=2*3=6

1 2 3 6 7

9 10 5 0 4

3 1 2 1 6

datatype arrayname [row size][column size]

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Initialization

1. By using an initialization list, 2D array can be initialized.

e.g. int a[2][3] = {1,4,6,2}

a

2. The initializers in the list can be braced row wise.

e.g int a[2][3] = {{1,4,6} , {2}};

Program 1.35

/ * Example for two dimensional array handling * /

#include <stdio.h>

void main()

{

int a[10][10],i,j,sum,d,n1,n,rowsum,colsum,diasum;

printf(“Enter order[row][col] of the matrix\n”);

scanf(“%d %d”,&n,&n1);

printf(“Enter %d elements\n”,n1*n);

for(i=0;i<n;i++)

for(j=0;j<n1;j++)

scanf(“%d”,&a[i][j]);

/ * Program module to sum all elements * /

sum=0;

for(i=0;i<n;i++)

for(j=0;j<n1;j++)

sum+=a[i][j];

printf(“Sum of all elements%d\n”,sum);

/ * Program to module to sum row wise */

for(i=0;i<n;i++)

1 4 6

2 0 0

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

{

rowsum=0;

for(j=0;j<n1;j++)

{

rowsum+=a[i][j];

printf(“row no = %d sum = %d\n”,i,rowsum);

}

}

/* Program module to sum colwise */

for(i=0;i<n;i++)

{

colsum=0;

for(j=0;j<n1;j++)

colsum+=a[j][i];

printf(“col no=%d sum=%d\n “,i,colsum);

}

/ * Program module to sum principle diagonal * /

}

Output

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

d

i

a

s

u

m

=

0

;

f

o

r(i=0;i<n;i++)

for(j=0;j<n1;j++)

if(i==j) diasum+=a[i][j];

printf(“Principle diagonal sum %d\n”,diasum);

/ * Program module to sum off diagonal */

diasum=0;

for(i=0;i<n;i++)

{

j= -n1;

diasum +=a[i][j];

}

printf(“Off diagonal sum%d\n”,diasum);

Enter order [row][col] of the matrix

3 3

Enter 9 elements

1 2 3 4 5 6 7 8 9

Sum of all elements 45

row no = 0 sum = 6

row no = 1 sum = 15

row no = 2 sum = 24

col no = 0 sum = 12

col no = 1 sum = 15

col no = 2 sum = 18

Principle diagonal sum 15

Off diagonal sum 15

 Three-Dimensional Arrays

Initialization of a 3d array

Initialize a three-dimensional array in a similar way to a two-dimensional array.

Example

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

int test[2][3][4] = {

{{3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2}},

{{13, 4, 56, 3}, {5, 9, 3, 5}, {3, 1, 4, 9}}};

Program 1.36

Write a C Program to store and print 12 values entered by the user

#include <stdio.h>

int main()

{

int test[2][3][2];

printf("Enter 12 values: \n");

for (int i = 0; i < 2; ++i)

{

for (int j = 0; j < 3; ++j)

{

for (int k = 0; k < 2; ++k)

{

scanf("%d", &test[i][j][k]);

}

}

}

// Printing values with the proper index.

printf("\nDisplaying values:\n");

for (int i = 0; i < 2; ++i)

{

for (int j = 0; j < 3; ++j)

{

for (int k = 0; k < 2; ++k)

{

printf("test[%d][%d][%d] = %d\n", i, j, k, test[i][j][k]);

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

}

}

}

return 0;

}

Output

Enter 12 values:

1

2

3

4

5

6

7

8

9

10

11

12

Displaying Values:

test[0][0][0] = 1

test[0][0][1] = 2

test[0][1][0] = 3

test[0][1][1] = 4

test[0][2][0] = 5

test[0][2][1] = 6

test[1][0][0] = 7

test[1][0][1] = 8

test[1][1][0] = 9

 CS3353 C PROGRAMMING AND DATA STRUCTURES

test[1][1][1] = 10

test[1][2][0] = 11

test[1][2][1] = 12

	Introduction to Arrays
	Definition
	Example
	Characteristics
	Advantages of C array
	Disadvantages of array
	Classifications
	Initialization of arrays
	ONE DIMENSIONAL ARRAY
	Syntax
	Initialization of single dimensional array
	Example
	char array_name[size]=”string”
	char mess[]={‘w’,‘e’,‘l’,‘c’,‘o’,‘m’,‘e’};

	Example (1)
	Example Programs Program 1.32
	Output:
	Program 1.33
	Output
	Program 1.34
	Output (1)

	MULTI-DIMENSIONAL ARRAY
	Two Dimensional Array
	Example
	Declaration
	Initialization
	Program 1.35
	Output
	Three-Dimensional Arrays Initialization of a 3d array
	Example (1)
	Program 1.36
	Output (1)

