3.2. SHEAR FORCE AND BENDING MOMENT DIAGRAM FOR A CANTILEVERCANTILEVER BEAM WITH SINGLE POINT LOAD AT FREE END

ThefollowingfigureshowsacantileverABoflengthLfixedatAandfreeatBand carrying a point load W at the free end B .

Let $\quad F_{x}=$ ShearforceatXand $\quad M_{x}=$ BendingmomentatX
TakeasectionXatadistancexfromthefreeend.Considertherightportionofthe section.

ShearForceCalculation

TheshearforceatthesectionBisequaltotheresultantforceactingontherightportion

atthegivensectionBasWanditactingdownwardisconsideredaspositive.
The shear force at this section $\mathrm{X}-\mathrm{X}$ is equal to the resultant force acting on the right portion at the given section $\mathrm{X}-\mathrm{X}$ as W and it acting downward is considered as positive.

The shear force will be constant at all section of the cantilever between A and B asthere is no load between A and B. The shear force diagram is shown in fig.

SF at $\mathrm{B}=+\mathrm{W}$	(+veduetorightsidedownwardload) SF
at $\mathrm{X}-\mathrm{X}=+\mathrm{W}$	(BecausenoloadbetweenBandX-X) SF
at $\mathrm{B}=+\mathrm{W}$	(due to same load as above)

Shearforcediagram:

BendingMomentCalculation:

TheBendingMoment atthesectionBisproportionaltothedistanceofthesectionfrom the free end as ($\mathrm{W} \times 0$) and it acting clockwise about that section is considered as negative.

The Bending Moment at this section X-X is proportional to the distance of the section from the free end as x as ($\mathrm{W} x x$) and it acting clockwise about that section is considered as negative.

The Bending Moment at this section fixed end is proportional to the distance of the section from the free end as L as ($\mathrm{W} \times \mathrm{L}$) and it acting clockwise about that section is considered as negative. The Bending Moment diagram is shown in fig.

Problem 2.2.1: A cantilever 6 m long carries load of $30,70,40$ and 60 kN at a distance of $0,0.6,1.5$ and 2 m respectively from the free end. Draw the SF and BM diagram for the cantilever.

GivenData:showninfigure. To
find: SFD and BMD Solution:

Calculation:
(Sum of vertical forces)

$$
\begin{aligned}
& \mathrm{SFatB}=+30 \mathrm{kN} \\
& \mathrm{SFatC}=+30+70=+100 \mathrm{kN} \\
& \mathrm{SFatD}=+30+70+40=+140 \mathrm{kN} \\
& \mathrm{SFatE}=+30+70+40+60=+200 \mathrm{kN}
\end{aligned}
$$

ShearForceDiagram:

Verticaldownwardpointloadaredrawnasupwardverticalline No load are drawn as horizontal line.

BendingmomentCalculation:[Sumof(VerticalforcexActingdistance)] BM at $B=-(30 \times 0) k N=0 \mathrm{kNm}$

BMatC $=-(30 \mathrm{x} 0.6)-(70 \times 0)=-18 \mathrm{kNm}$
BMatD $=-(30 x 1.5)-(70 x 0.9)-(40 x 0)=-108 \mathrm{kNm}$
BMatE=-(30x2.4)-(70x1.8)-(40x0.9)-(60x0)=-234kNm
BMatA=-(30x6)-(70x5.4)- $(40 \times 4.5)-(60 \times 3.6)=-954 \mathrm{kNm}$

BendingmomentDiagram:

Verticaldownwardpointloadaredrawnasinclinedline.AllBMareinnegativeside.
Result:TheSFDandBMDaredrawnasshowninfig.

3.2.2. SHEAR FORCE AND BENDING MOMENT DIAGRAM FOR A CANTILEVER BEAM WITH UNIFORMLY DISTRIBUTED LOAD

Consider a cantilever beam of length L fixed at A and carrying a uniformly distributed load of w per unit length over the entire length of the beam.

Take the section X at a distance of ' x ' from the free end B. Here we have consider the right portion of the beam section.

Let $F_{x}=$ ShearforceatX and $\quad M_{x}=$ BendingmomentatX

ShearForceCalculation:

The shear force at the section X will be equal to the resultant force acting on the right portion up to the section.

Theresultantforceontherightportion=loadxdistanceofrightportion $=w \mathrm{x} x$
Theresultantforceactingontherightportionactingdownwardisconsideredpositive.
\therefore Shearforceat $X,{ }_{x}=+w \cdot x$
Theaboveequationshowsthattheshearforcefollowsastraightline law.
SFatB, when $x=0$ hence $=+($ loadxdistance $)=w x 0=+0$
SFatA, when $x=$ Lhence $=+($ load $x d i s t a n c e)=w x L=+w \cdot L$

ShearForceDiagram:

WhenanUDLactingonthebeamisindicatedinShearforcediagramasaninclined line. The shear force diagram shown in fig.

BendingmomentCalculation:

The UDL over a section ofbeam is converted into point load acting at the C.G ofthesection.

Thebendingmomentwillbenegativeasfortherightportionofthesection,the moment of the load at x is clockwise.

ThebendingmomentatthesectionXisgivenby
$M_{x}=-($ totalloadonrightportion)x(distanceofC.Gofrightportionfrom X)

$$
=-(w \cdot x) \times\left({ }^{x}\right)=-=w^{x^{2}} \quad \overline{2}
$$

From the above eqn. it is clear that B.M. at any section is proportional to the square of the distance from the free end. This follows a parabolic law.

BMatB, when $x=0$ hence $=-\mathrm{w}_{\mathrm{x}} 0=\frac{0}{2}$
BMatA, when $x=L$ hence $=-w_{X} L^{2}=-\frac{w}{2} . .^{2}$

$$
\overline{2}
$$

BendingmomentDiagram:

WhenanUDLactingonthebeamisindicatedinBendingMomentdiagramas an
paraboliccurvedline.TheBendingMomentdiagramshowninfig.
Problem2.2.3: Acantileveroflength2mcarriesaUDLof $3 \mathrm{kN} / \mathrm{m}$. DrawtheSFandBM diagram.
GivenData:showninfigure. To
find: SFD and BMD Solution:
ShearForceCalculation:(Sumofverticalforces)
ForUDL,itwillbeconvertedintopointloadas(Pointload=UDLxloadacting distance) and the converted point load acting at its middle means divided by 2

SFatB=+0kN
SFatA $=+0+(3 \times 2)=+6 \mathrm{kN}$

ShearForceDiagram:

VerticaldownwardUDLaredrawnasinclinedlinebasedonsign No load are drawn as horizontal line.

BendingmomentCalculation:[Sumof(VerticalforcexDistanceofloadactingfromrequired section)]

ForUDL,itwillconvertintopointloadandthatPLactatitsmiddle BM at $\mathrm{B}=$
$-(0 \times 0) \mathrm{kN}=0 \mathrm{kNm}$
$\mathrm{BMatC}=-(0 \times 2)-\left[(3 \times 2) \mathrm{x}^{2}\right]=-6 \mathrm{kNm}_{2}$

BendingmomentDiagram:

VerticaldownwardUDLaredrawnasparaboliccurvedlinebasedontheirsign.
Result:TheSFDandBMDaredrawnasshowninfig.
Problem 2.3: A cantilever of length 4 m carries a UDL of $3 \mathrm{kN} / \mathrm{m}$ run over the whole length and two point loads of 4 kN and 2.5 kN are placed 1 m and 2 m respectivelyfrom the fixed end. Draw the SF and BM diagram.

GivenData:showninfigure.
Tofind:SFDandBMD

Solution:

Shear

Force
Calculation:(Sumofverticalforces)
ForUDL,itwillbeconvertedintopointloadas(Pointload=UDLxloadacting distance) and the converted point load acting at its middle means divided by 2

SFatB $=+0 \mathrm{kN}$
SFatC $=+0+2.5+(3 \mathrm{x} 2)=+8.5 \mathrm{kN}$
When point load and UDL acting at a particular point, first we have not consider Point Load and next consider point load to find shear force

SFatD $=+3+2+(3 \times 1.5)=+9.5 \mathrm{kN}$ (WithoutconsiderPL)
SF at $\mathrm{D}=+3+2+2+(3 \times 1.5)=+11.5 \mathrm{kN} \quad$ (WithconsiderPL)
SF at $\mathrm{A}=+0+2.5+4+(3 \mathrm{x} 4)=+18.5 \mathrm{kN}$

ShearForceDiagram:

Verticaldownwardpointloadaredrawnasverticallinebasedonsign Vertical downward UDL are drawn as inclined line based on sign

BendingmomentCalculation:[Sumof(VerticalforcexDistanceofloadactingfromrequired section)]

ForUDL,itwillconvertintopointloadandthatPLactatitsmiddle BM at $\mathrm{B}=$
$-(0 \times 0)=0 \mathrm{kNm}$

```
BMatC \(=-(0 \times 2)-(2.5 \times 0)-\left[(3 \times 2) x^{2}\right]=-6 \mathrm{kNm}_{2}\)
BMatD \(=-(0 \times 3)-(2.5 \times 1)-(4 \times 0)-\left[(3 \times 3) \times \frac{3}{3}=-16 \underset{2}{16 \mathrm{kNm}}\right.\)
BMatA \(=-(0 \mathrm{x} 4)-(2.5 \times 2)-(4 \mathrm{x} 1)-\left[(3 \mathrm{x} 4) \mathrm{x}^{4}\right]=-33 \mathrm{kNm}\)
```


BendingmomentDiagram:

VerticaldownwardUDLaredrawnasparaboliccurvedlinebasedontheirsign.

Result:

TheSFDandBMDaredrawnasshowninfig.
Problem 2.4: A cantilever of length 5 m carries a UDL of $3 \mathrm{kN} / \mathrm{m}$ run over the length of 1.5 m start from 1.5 m from fixed end and two point load 2 kN acting at 1.5 m and 3 m respectively from fixed end and another point load 3 kN acting at the free end. Draw the SF and BM diagram.

GivenData:showninfigure. To
find: SFD and BMD Solution:

ShearForceCalculation:(Sumofverticalforces)

ForUDL,itwillbeconvertedintopointloadas(Pointload=UDLxloadacting distance) and the converted point load acting at its middle means divided by 2

SFatB $=+3 \mathrm{kN}$
SFatC $=+3+2=+5 \mathrm{kN}$
When point load and UDL acting at a particular point, first we have not consider Point Load and next consider point load to find shear force
$\mathrm{SFatD}=+3+2+(3 \times 1.5)=+9.5 \mathrm{kN}$ (WithoutconsiderPL)
SF at $\mathrm{D}=+3+2+2+(3 \times 1.5)=+11.5 \mathrm{kN} \quad$ (WithconsiderPL)
SF at $\mathrm{A}=+3+2+2+(3 \mathrm{x} 1.5)=+11.5 \mathrm{kN}$

ShearForceDiagram:

Verticaldownwardpointloadaredrawnasverticallinebasedonsign.
Vertical downward UDL are drawn as inclined line based on sign.
Noloadaredrawnashorizontalline.
BendingmomentCalculation:[Sumof(VerticalforcexDistanceofloadactingfromrequired section)]

ForUDL,itwillconvertintopointloadandthatPLactatitsmiddle BM at $\mathrm{B}=$
$-(3 \times 0)=0 \mathrm{kNm}$
BMatC $=-(3 \times 2)-(2 . x 0)=-6 \mathrm{kNm}$
BMatD $=-(3 \times 3.5)-(2 \times 1.5)-(2 \times 0)-\left[(3 \times 1.5) x^{1.5}\right]=-16.875 \mathrm{kNm}_{2}^{\mathrm{N}}$
BMatA $=-(3 \times 5)-(2 \times 3)-(2 \times 1.5)-[(3 \times 1.5) \times(1.5+1.5)]=-3 \frac{4.4}{2} 25 \mathrm{kNm}$

BendingmomentDiagram:

VerticaldownwardPLaredrawnasinclinedlinebasedontheirsign.Vertical downward UDL are drawn as parabolic curved line based on their sign.

Result:

TheSFDandBMDaredrawnasshowninfig.

3.2.3. SHEAR FORCE AND BENDING MOMENT DIAGRAM FOR A CANTILEVER BEAM WITH UNIFORMLY VARYING LOAD

ConsideracantileverbeamoflengthLfixedatAandcarryingauniformlyvarying load from zero at the free and to w per unit length at the fixed end of beam.

Take the section X at a distance of ' x ' from the free end B. Here we have consider the right portion of the beam section.

Let $F_{x}=$ ShearforceatXand $M_{x}=$ BendingmomentatX

ShearForceCalculation:

Let us firstfind the rate of loading at the section X. The rate of loading is zero at B and is ' w ' per meter run at A . This means that rate of loading for a length L is w per unit length.

Hencerateofloadingforalengthof $x=\frac{w}{L} x x$ perunitlength. Whichisequaltothe loadacting at $\mathrm{X}=\mathrm{CX}={ }^{\mathrm{w}} \mathrm{x}_{\mathrm{x}} \mathcal{L}_{-}$
(a)

(b)

(c)

Theresultantforceactingontherightportionactingdownward isconsideredpositive. The shear force at the section X at a distance x from free end is given by

$$
\begin{aligned}
F_{x} \quad & =+(\text { Totalloadonthecantileverforalength } x \text { fromthefreeendB }) \\
& =+(\text { AreaoftriangleBCX }) \\
& =+\left({ }^{1} \times \mathrm{xXBx} \mathrm{XC}\right) \\
& =+\frac{1}{2} \mathrm{x} x \mathrm{x} \quad\left(\frac{\mathrm{w}}{L} \mathrm{x} x\right)=+w . \quad \frac{x^{2}}{2 L} \quad\left(\because X B=x, C={ }^{\mathrm{w}} \quad \frac{}{L} \times x\right)
\end{aligned}
$$

Fromtheaboveeqn.showsthattheSFvariesaccordingtotheparaboliclaw.

$$
\begin{aligned}
& \text { SFatB, when } x=\text { Ohence }=+w \cdot 0^{2}=0 \\
& \overline{2 L} \\
& \text { SFatA, when } x=L \text { Lhence }=+w \cdot L^{2} \quad \overline{2 L} \quad=+\frac{\mathrm{w} \cdot L}{2}
\end{aligned}
$$

ShearForceDiagram:

When an UVL acting on the beam is indicated in Shear force diagram as an Parabolic curved line. The shear force diagram shown in fig.

BendingmomentCalculation:

The UVL over a section ofbeam is converted into point load acting at the C.G ofthesection.

Thebendingmomentwillbenegativeasfortherightportionofthesection,the moment of the load at x is clockwise about the section.

ThebendingmomentatthesectionXisgivenby

$$
\begin{aligned}
M_{x} \quad & =-(\text { totalloadonrightportion }) \times(\text { DistanceoftheloadfromX }) \\
= & -(\text { AreaoftriangleBCX }) \mathrm{x}(\text { DistanceofC.Goftrianglefrom } \mathrm{X}) \\
& =-\left(w \cdot \frac{x^{2}}{2 L}\right) \times\left(\frac{1}{3}\right)=-\frac{w x^{3}}{6 L}
\end{aligned}
$$

Fromtheabove eqn. itisclearthatB.M.atanysection isproportionaltothecube of the distance from the free end. This follows a cubic law.

BMat B, when $x=0$ hence $=-w x 0=\frac{0}{6 L}$
BMatA, when $x=L$ hence $=-$ wx $L^{3} \frac{}{6 L}=-w \cdot L^{2} \frac{1}{6}$

BendingmomentDiagram:

When an UDL actingonthebeamisindicated inBendingMomentdiagramas an cubic curved line. The Bending Moment diagram shown in fig.

Problem2.5: Acantileveroflength4mcarriesagradually increasingload,zeroatthefree end to $2 \mathrm{kN} / \mathrm{m}$ at the fixed end. Draw the SF and BM diagrams for the cantilever.

GivenData:showninfigure. To
find: SFD and BMD Solution:
ShearForceCalculation:(Sumofverticalforces)

ForUVL,itwillbeconvertedintopointloadas(Pointload=Areaoftriangle $={ }^{1} \mathrm{X}$
UVLxloadactingdistance)andtheconvertedpointloadactingdistanceatits ${ }^{l}$ higherload end.

$$
\mathrm{SFatB}=+0 \mathrm{kN}
$$

$$
\text { SFatA }=+0+\left({ }^{1} \times 2 x_{2}-4\right)=+4 \mathrm{kN}
$$

(a)

(b)

(c)

ShearForceDiagram:

DownwardUVLaredrawnasparaboliccurvedlinebasedonsign.
BendingmomentCalculation:[Sumof(VerticalforcexDistanceofloadactingfromrequired section)]

ForUVL,itwillconvertintopointloadandthatPLactatitslfromthehigherloadend.
BMatB $=-(0 x 0)=0 \mathrm{kNm}$
BMatA $=-(0 \times 4)-\left[\left(\frac{1}{x} 2 \times 4\right) x^{4}\right]=-5.33 \mathrm{kNm}$

BendingmomentDiagram:

VerticaldownwardUVLaredrawnascubiccurvedlinebasedontheirsign.
Result:TheSFDandBMDaredrawnasshowninfig.

