
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Linked list implementation – Singly linked lists

Linked Lists Versus Arrays

Arrays and linked lists are a linear collection of data elements

Array Linked Lists

It stores its nodes in consecutive

memory locations

It does not store its nodes in consecutive memory

locations

It allows random access of data It does not allow random access of data. Nodes in a linked

list can be accessed only in a sequential manner

It cannot add any number of

elements in the array

It can add any number of elements in the list

SINGLY LINKED LISTS

Definition

A singly linked list is the simplest type of linked list in which every node contains some data and a pointer to the next

node of the same data type. By saying that the node contains a pointer to the next node, we mean that the node

stores the address of the next node in sequence. A singly linked list allows traversal of data only in one way

Traversing a Linked List

Accessing the nodes of the list in order to perform some processing on them. Remember a linked list always contains

a pointer variable START which stores the address of the first node of the list. End of the list is marked by storing

NULL or –1 in the NEXT field of the last node. For traversing the linked list, we also make use of another pointer

variable PTR which points to the node that is currently being accessed.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Algorithm for traversing a linked list

 In this algorithm, we first initialize PTR with the address of START. So now, PTR points to the first node of the

linked list.

 Then in Step 2, a while loop is executed which is repeated till PTR processes the last node, that is until it

encounters NULL.

 In Step 3, we apply the process (e.g., print) to the current node, that is, the node pointed by PTR.

 In Step 4, we move to the next node by making the PTR variable point to the node whose address is stored in

the NEXT field.

Algorithm to print the number of nodes in a linked list

We will traverse each and every node of the list and while traversing every individual node, we will increment the

counter by 1. Once we reach NULL, that is, when all the nodes of the linked list have been traversed, the final value

of the counter will be displayed.

Searching for a Value in a Linked List

Searching a linked list means finding whether a given value is present in the information part of the node or not. If it

is present, the algorithm returns the address of the node that contains the value.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

 In Step 1, we initialize the pointer variable PTR with START that contains the address of the first node.

 In Step 2, a while loop is executed which will compare every node’s DATA with VAL for which the search is

being made.

 If the search is successful, that is, VAL has been found, then the address of that node is stored in POS and the

control jumps to the last statement of the algorithm.

 However, if the search is unsuccessful, POS is set to NULL which indicates that VAL is not present in the

linked list.

Example: Illustration of Searching algorithm

Consider the linked list shown in Figure. If we have VAL = 4, then the flow of the algorithm can be explained as

shown in the figure.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Inserting a New Node in a Linked List

How a new node is added into an already existing linked list? We will take four cases and then see how

insertion is done in each case.

Case 1: The new node is inserted at the beginning.

Case 2: The new node is inserted at the end.

Case 3: The new node is inserted after a given node.

Case 4: The new node is inserted before a given node. OVERFLOW

Overflow is a condition that occurs when AVAIL = NULL or no free memory cell is present in the system. When

this condition occurs, the program must give an appropriate message.

Case 1: Inserting a Node at the Beginning of a Linked List

Add a new node with data 9 and add it as the first node of the list.

Algorithm to insert a new node at the beginning

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

 In Step 1, we first check whether memory is available for the new node. If the free memory has

exhausted, then an OVERFLOW message is printed.

 Otherwise, if a free memory cell is available, then we allocate space for the new node. Set its DATA part

with the given VAL and the next part is initialized with the address of the first node of the list, which is

stored in START.

 Now, since the new node is added as the first node of the list, it will now be known as the START node,

that is, the START pointer variable will now hold the address of the NEW_NODE.

Note the following two steps:

Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL -> NEXT

These steps allocate memory for the new node. In C, there are functions like malloc(), alloc, and calloc() which

automatically do the memory allocation on behalf of the user.

Case 2: Inserting a Node at the End of a Linked List

Add a new node with data 9 as the last node of the list

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Algorithm to insert a new node at the end

This algorithm to insert a new node at the end of a linked list. In Step 6, we take a pointer variable PTR and

initialize it with START. That is, PTR now points to the first node of the linked list. In the while loop, we

traverse through the linked list to reach the last node. Once we reach the last node, in Step 9, we change the

NEXT pointer of the last node to store the address of the new node. Remember that the NEXT field of the

new node contains NULL, which signifies the end of the linked list.

Case 3: Inserting a Node After a Given Node in a Linked List

Add a new node with value 9 after the node containing data 3.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Algorithm to insert a new node after a node that has value NUM

 In Step 5, we take a pointer variable PTR and initialize it with START. That is, PTR now points to the first node

of the linked list.

 Then we take another pointer variable PREPTR which will be used to store the address of the node preceding

PTR. Initially, PREPTR is initialized to PTR.

 So now, PTR, PREPTR, and START are all pointing to the first node of the linked list.

 In the while loop, we traverse through the linked list to reach the node that has its value equal to NUM. We

need to reach this node because the new node will be inserted after this node.

 Once we reach this node, in Steps 10 and 11, we change the NEXT pointers in such a way that new node is

inserted after the desired node.

Case 4: Inserting a Node Before a Given Node in a Linked List

Add a new node with value 9 before the node containing 3.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Algorithm to insert a new node before a node that has value NUM

 In Step 5, we take a pointer variable PTR and initialize it with START. That is, PTR now points to the first node

of the linked list.

 Then, we take another pointer variable PREPTR and initialize it with PTR. So now, PTR, PREPTR, and START

are all pointing to the first node of the linked list.

 In the while loop, we traverse through the linked list to reach the node that has its value equal to NUM.

 We need to reach this node because the new node will be inserted before this node.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

 Once we reach this node, in Steps 10 and 11, we change the NEXT pointers in such a way that the new node

is inserted before the desired node.

Deleting a Node from a Linked List

We will discuss how a node is deleted from an already existing linked list. We will consider three cases and then see

how deletion is done in each case.

Case 1: The first node is deleted.

Case 2: The last node is deleted.

Case 3: The node after a given node is deleted.

 Underflow is a condition that occurs when we try to delete a node from a linked list that is empty. This

happens when START = NULL or when there are no more nodes to delete.

 Note that when we delete a node from a linked list, we actually have to free the memory occupied by that

node.

 The memory is returned to the free pool so that it can be used to store other programs and data.

 Whatever be the case of deletion, we always change the AVAIL pointer so that it points to the address that

has been recently vacated.

Case 1: The first node is deleted.

When we want to delete a node from the beginning of the list, then the following changes will be done in the linked

list.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Algorithm to delete the first node

 In Step 1, we check if the linked list exists or not. If START = NULL, then it signifies that there are no nodes in

the list and the control is transferred to the last statement of the algorithm.

 However, if there are nodes in the linked list, then we use a pointer variable PTR that is set to point to the

first node of the list.

 For this, we initialize PTR with START that stores the address of the first node of the list.

 In Step 3, START is made to point to the next node in sequence and finally the memory occupied by the node

pointed by PTR (initially the first node of the list) is freed and returned to the free pool.

Case 2: The last node is deleted.

We want to delete the last node from the linked list, then the following changes will be done in the linked list.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Algorithm to delete the last node

 In Step 2, we take a pointer variable PTR and initialize it with START. That is, PTR now points to the first

node of the linked list.

 In the while loop, we take another pointer variable PREPTR such that it always points to one node before

the PTR.

 Once we reach the last node and the second last node, we set the NEXT pointer of the second last node

to NULL, so that it now becomes the (new) last node of the linked list.

 The memory of the previous last node is freed and returned back to the free pool.

Case 3: The node after a given node is deleted.

We want to delete the node that succeeds the node which contains data value 4. Then the following changes will

be done in the linked list.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3301 DATA STRUCTURES

Algorithm to delete the node after a given node

 In Step 2, we take a pointer variable PTR and initialize it with START.

 That is, PTR now points to the first node of the linked list. In the while loop, we take another pointer

variable PREPTR such that it always points to one node before the PTR.

 Once we reach the node containing VAL and the node succeeding it, we set the next pointer of the node

containing VAL to the address contained in next field of the node succeeding it.

 The memory of the node succeeding the given node is freed and returned back to the free pool.

