
ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 QUEUE ADT

 A queue can be defined as an ordered list which enables insert operations to be

performed at one end called REAR and delete operations to be performed at

another end called FRONT.

 Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a

queue is open at both its ends. One end is always used to insert data (enqueue) and

the other is used to remove data (dequeue)

 Queue is referred to be as First In First Out list. i.e., the data item stored first will

be accessed first.

 For example, people waiting in line for a rail ticket form a queue.

Fig. 3.27: Data Structure of Queue

 Applications of Queue

Due to the fact that queue performs actions on first in first out basis which is quite

fair for the ordering of actions. There are various applications of queues discussed as

below.

 Queues are widely used as waiting lists for a single shared resource like printer,

disk, CPU.

 Queues are used in asynchronous transfer of data (where data is not being

transferred at the same rate between two processes) for eg. pipes, file IO, sockets.

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Queues are used as buffers in most of the applications like MP3 media player, CD

player, etc.

 Queue are used to maintain the play list in media players in order to add and

remove the songs from the play-list.

 Queues are used in operating systems for handling interrupts.

 Basic Operations in Queue

 Enqueue operation: The term "enqueue" refers to the act of adding a new element

to a queue.

 Dequeue operation: Dequeue is the process of deleting an item from a queue. We

must delete the queue member that was put first since the queue follows the FIFO

principle. Front Operation: This works similarly to the peek operation in stacks

in that it returns the value of the first element without deleting it.

 isEmpty Operation: The isEmpty() function is used to check if the Queue is empty

or not.

 isFull Operation: The isFull() function is used to check if the Queue is full or not.

 Types of Queue

 Simple Queue or Linear Queue

 Circular Queue

 Priority Queue

 Double Ended Queue (or Deque)

 Simple Queue or Linear Queue

 In Linear Queue, an insertion takes place from one end while the deletion occurs

from another end. The end at which the insertion takes place is known as the

rear end, and the end at which the deletion takes place is known as front end. It

strictly follows the FIFO rule.

 The major drawback of using a linear Queue is that insertion is done only from

the rear end. If the first three elements are deleted from the Queue, we cannot

insert more elements even though the space is available in a Linear Queue. In this

case, the linear Queue shows the overflow condition as the rear is pointing to the

last element of the Queue

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Fig. 3.28 Representation of Linear Queue

 Circular Queue

 In Circular Queue, all the nodes are represented as circular. It is similar to the

linear Queue except that the last element of the queue is connected to the first

element. It is also known as Ring Buffer, as all the ends are connected to another

end.

 The drawback that occurs in a linear queue is overcome by using the circular

queue. If the empty space is available in a circular queue, the new element can be

added in an empty space by simply incrementing the value of rear. The main

advantage of using the circular queue is better memory utilization.

Fig. 3.29 Representation of circular Queue

 Priority Queue

 It is a special type of queue in which the elements are arranged based on the

priority. It is a special type of queue data structure in which every element has a

priority associated with it. Suppose some elements occur with the same priority,

they will be arranged according to the FIFO principle.

 Insertion in priority queue takes place based on the arrival, while deletion in the

priority queue occurs based on the priority. Priority queue is mainly used to

implement the CPU scheduling algorithms.

Fig. 3.30 Representation of Priority Queue

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

There are two types of priority queue

1. Ascending priority queue - In ascending priority queue, elements can be inserted

in arbitrary order, but only smallest can be deleted first.

2. Descending priority queue - In descending priority queue, elements can be

inserted in arbitrary order, but only the largest element can be deleted first.

 Deque (or, Double Ended Queue)

 In Deque or Double Ended Queue, insertion and deletion can be done from both

ends of the queue either from the front or rear. It means that we can insert and

delete elements from both front and rear ends of the queue. Deque can be used as

a palindrome checker means that if we read the string from both ends, then the

string would be the same.

 Deque can be used both as stack and queue as it allows the insertion and deletion

operations on both ends.

Fig. 3.31 Representation of Double Ended Queue

There are two types of Deque

 Input restricted Deque - As the name implies, in input restricted queue, insertion

operation can be performed at only one end, while deletion can be performed from

both ends.

 Output restricted Deque - As the name implies, in output restricted queue,

deletion operation can be performed at only one end, while insertion can be

performed from both ends.

 PRIORITY QUEUES

 A priority queue is an abstract data type that behaves similarly to the normal queue

except that each element has some priority, i.e., the element with the highest

priority would come first in a priority queue. The priority of the elements in a

priority queue will determine the order in which elements are removed from the

priority queue.

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 The priority queue supports only comparable elements, which means that the

elements are either arranged in an ascending or descending order.

 For example, suppose we have some values like 1, 3, 4, 8, 14, 22 inserted in a

priority queue with an ordering imposed on the values is from least to the greatest.

Therefore, the 1 number would be having the highest priority while 22 will be

having the lowest priority.

 Characteristics of a Priority queue

A priority queue is an extension of a queue that contains the following characteristics:

 Every element in a priority queue has some priority associated with it.

 An element with the higher priority will be deleted before the deletion of the lesser

priority.

 If two elements in a priority queue have the same priority, they will be arranged

using the FIFO principle.

Let's understand the priority queue through an example.

We have a priority queue that contains the following

values: 1, 3, 4, 8, 14, 22

All the values are arranged in ascending order. Now, we will observe how the

priority queue will look after performing the following operations:

poll(): This function will remove the highest priority element from the priority queue. In

the above priority queue, the '1' element has the highest priority, so it will be removed

from the priority queue.

add(2): This function will insert '2' element in a priority queue. As 2 is the smallest

element among all the numbers so it will obtain the highest priority.

poll(): It will remove '2' element from the priority queue as it has the highest priority

queue.

add(5): It will insert 5 element after 4 as 5 is larger than 4 and lesser than 8, so it will

obtain the third highest priority in a priority queue.

 Types of Priority Queue

There are two types of priority queue:

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Ascending order priority queue

In ascending order priority queue, a lower priority number is given as a higher

priority in a priority. For example, we take the numbers from 1 to 5 arranged in an

ascending order like 1,2,3,4,5; therefore, the smallest number, i.e., 1 is given as the

highest priority in a priority queue.

Fig. 3.32 Ascending order priority

queue Descending order priority queue:

In descending order priority queue, a higher priority number is given as a higher

priority in a priority. For example, we take the numbers from 1 to 5 arranged in

descending order like 5, 4, 3, 2, 1; therefore, the largest number, i.e., 5 is given as the

highest priority in a priority queue.

Fig. 3.33 Descending order priority queue

 Representation of priority queue

Now, let’s see how to represent the priority queue through a one-way list.

We will create the priority queue by using the list given below in which INFO list

contains the data elements, PRN list contains the priority numbers of each data element

available in the INFO list, and LINK basically contains the address of the next node.

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Let's create the priority queue step by step.

In the case of priority queue, lower priority number is considered the higher

priority, i.e., lower priority number = higher priority.

Step 1: In the list, lower priority number is 1, whose data value is 333, so it will be inserted

in the list as shown in the below diagram:

Step 2: After inserting 333, priority number 2 is having a higher priority, and data values

associated with this priority are 222 and 111. So, this data will be inserted based

on the FIFO principle; therefore 222 will be added first and then 111.

Step 3: After inserting the elements of priority 2, the next higher priority number is 4 and

data elements associated with 4 priority numbers are 444, 555, 777. In this case,

elements would be inserted based on the FIFO principle; therefore, 444 will be

added first, then 555, and then 777.

Step 4: After inserting the elements of priority 4, the next higher priority number is 5, and

the value associated with priority 5 is 666, so it will be inserted at the end of the

queue.

 Implementation of Priority Queue

 The priority queue can be implemented in four ways that include arrays, linked

list, heap data structure and binary search tree. The heap data structure is the most

efficient way of implementing the priority queue, so we will implement the

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

priority queue using a heap data structure in this topic. Now, first we understand

the reason why heap is the most efficient way among all the other data structures.

 Analysis of complexities using different implementations

 A comparative analysis of different implementations of priority queue is given in

table 3.4

Table 3.4 Analysis of priority queue

Operations peek insert delete

Linked List O(1) O(n) O(1)

Binary Heap O(1) O(log n) O(log n)

Binary Search Tree O(1) O(log n) O(log n)

 Heap

 A heap is a tree-based data structure that forms a complete binary tree, and

satisfies the heap property.

 If A is a parent node of B, then A is ordered with respect to the node B for all

nodes A and B in a heap.

 It means that the value of the parent node could be more than or equal to the value

of the child node, or the value of the parent node could be less than or equal to the

value of the child node.

 Therefore, we can say that there are two types of heaps:

Fig. 3.34 Max heap Fig. 3.35 Min heap

 Max heap: The max heap is a heap in which the value of the parent node is

greater than the value of the child nodes.

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Min heap: The min heap is a heap in which the value of the parent node is

less than the value of the child nodes.

 Priority Queue Operations

The common operations that we can perform on a priority queue are

 Insertion,

 Deletion and

 Peek

Let's see how we can maintain the heap data structure.

 Inserting the element in a priority queue (max heap)

If we insert an element in a priority queue, it will move to the empty slot by

looking from top to bottom and left to right.

If the element is not in a correct place then it is compared with the parent node; if

it is found out of order, elements are swapped. This process continues until the element

is placed in a correct position.

Algorithm 3.18

START

If(no node):

Create node

Else:

Insert node at end of heap

Heapify

END

Let us now see with an example how this works:

Example 3.10

Let’s say the elements are 1,4,2,7,8,5. The max-heap of these elements would look like:

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Now, let’s try to insert a new element, 6. Since there are nodes present in the heap, we

insert this node at the end of heap so it looks like this:

Then, heapify operation is implemented. After which, the heap will look like this:

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Removing the minimum element from the priority queue

In a max heap, the maximum element is the root node. When we remove the root

node, it creates an empty slot. The last inserted element will be added in this empty slot.

Then, this element is compared with the child nodes, i.e., left-child and right child, and

swap with the smaller of the two. It keeps moving down the tree until the heap property

is restored.

Algorithm 3.19:

START

If node that needs to be deleted is a leaf node:

Remove the node

Else:

Swap node that needs to be deleted with the last leaf node present.

Remove the node

Heapify

END

Let us now see with an example how this works:

Example: 3.11

Let’s say the elements are 1,4,2,7,8,5,6. The max-heap of these elements would look like:

Now, let’s try to delete an element, 6. Since this is not a leaf node, we swap it with the

last leaf node so it looks like this:

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Then, we remove the leaf node so it looks like this:

Then, heapify operation is implemented. After which, the heap will look like this:

 Peeking the element from a priority queue

This will return the maximum element if a max-heap is used and the minimum

number if a min-heap is used. To do both of these, we return root node. This is because

in the max-heap or the min-heap the maximum or minimum element will be present at

the root node respectively.

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Applications of Priority Queue

The following are the applications of a Priority Queue:

 It is used in Djikstra’s Algorithm – To find the shortest path between nodes in a

graph.

 It is used in Prim’s Algorithm – To find the Minimum Spanning Tree in a

weighted undirected graph.

 It is used in Heap Sort – To sort the Heap Data Structure

 It is used in Huffman Coding – A Data Compression Algorithm

 It is used in Operating Systems for:

o Priority Scheduling – Where processes must be scheduled according to their

priority.

o Load Balancing – Where network or application traffic must be balanced

across multiple servers.

o Interrupt Handling – When a current process is interrupted, a handler is

assigned to the same to rectify the situation immediately.

 A* Search Algorithm – A graph traversal and a path search algorithm

 QUEUE IMPLEMENTATION

 Array implementation of Queue

 Queue can be represented easily by using linear arrays.

 There are two variables i.e. front and rear that are implemented in the case of every

queue.

 Front and rear variables point to the position from where insertions and deletions

are performed in a queue.

 Initially, the value of front and queue is -1 which represents an empty queue.

Array representation of a queue containing 5 elements along with the respective

values of front and rear, is shown in figure 3.36.

The above figure 3.36 shows the queue of characters forming the English word

"HELLO". Since, No deletion is performed in the queue till now, therefore the value of

front remains -1. However, the value of rear increases by one every time an insertion is

performed in the queue. After inserting an element into the queue shown in the above

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

figure, the queue will look something like following. The value of rear will become 5

while the value of front remains same.

Fig. 3.36: Array representation of Queue

Fig. 3.37: Queue after inserting an element

After deleting an element, the value of front will increase from -1 to 0. However,

the queue will look something like following.

Fig. 3.38: Queue after deleting an element

 Algorithm to insert any element in a queue

 Check if the queue is already full by comparing rear to max - 1. if so, then return

an overflow error.

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 If the item is to be inserted as the first element in the list, in that case set the value

of front and rear to 0 and insert the element at the rear end.

 Otherwise keep increasing the value of rear and insert each element one by one

having rear as the index.

Algorithm 3.20

Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

Step 2: IF FRONT = -1 and REAR = -

1 SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: Set QUEUE[REAR] = NUM

Step 4: EXIT

 Implementation using C Function:

void insert (int queue[], int max, int front, int rear, int item)

{

if (rear + 1 == max)

{

printf("overflow");

}

else

{

if(front == -1 && rear == -1)

{

front = 0;

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

rear = 0;

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

}

else

{

rear = rear + 1;

}

queue[rear]=item;

}

}

 Algorithm to delete an element from the queue

 If, the value of front is -1 or value of front is greater than rear, write an underflow

message and exit.

 Otherwise, keep increasing the value of front and return the item stored at the front

end of the queue at each time.

Algorithm 3.21

Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

Step 2: EXIT

 Implementation using C Function

int delete (int queue[], int max, int front, int rear)

{

int y;

if (front == -1 || front > rear)

{

printf("underflow");

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

}

else

{

y = queue[front];

if(front == rear)

{

front = rear = -1;

else

front = front + 1;

}

return y;

}

}

 Drawback of array implementation

 Memory wastage: The space of the array, which is used to store queue elements,

can never be reused to store the elements of that queue because the elements can

only be inserted at front end and the value of front might be so high so that, all the

space before that, can never be filled.

 Deciding the array size: On of the most common problem with array

implementation is the size of the array which requires to be declared in advance.

Due to the fact that, the queue can be extended at runtime depending upon the

problem, the extension in the array size is a time taking process and almost

impossible to be performed at runtime since a lot of reallocations take place.

 Linked List implementation of Queue

 One of the alternative of array implementation is linked list implementation of

queue.

 The storage requirement of linked representation of a queue with n elements is

O(n) while the time requirement for operations is O(1).

 In a linked queue, each node of the queue consists of two parts i.e. data part and

the link part.

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Each element of the queue points to its immediate next element in the memory.

 In the linked queue, there are two pointers maintained in the memory i.e. front

pointer and rear pointer.

 The front pointer contains the address of the starting element of the queue while

the rear pointer contains the address of the last element of the queue.

 Insertion and deletions are performed at rear and front end respectively.

 If front and rear both are NULL, it indicates that the queue is

empty. The linked representation of queue is shown in the figure 3.39

Fig. 3.39 Linked list representation of queue

 Insertion on Linked Queue

 The insert operation append the queue by adding an element to the end of the

queue.

 The new element will be the last element of the queue.

 There can be the two scenario of inserting this new node ptr into the linked queue.

 In the first scenario, we insert element into an empty queue. In this case, the

condition front = NULL becomes true. Now, the new element will be added as the

only element of the queue and the next pointer of front and rear pointer both, will

point to NULL.

 In the second case, the queue contains more than one element. The condition front

= NULL becomes false. In this scenario, we need to update the end pointer rear

so that the next pointer of rear will point to the new node ptr.

 Since, this is a linked queue, hence we also need to make the rear pointer point to

the newly added node ptr.

 Also make the next pointer of rear point to NULL.

Algorithm 3.22

Step 1: Allocate the space for the new node PTR

Step 2: SET PTR -> DATA = VAL

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

Step 4: END

 Implementation using C Function

void insert(struct node *ptr, int item;)

{

ptr = (struct node *) malloc (sizeof(struct node));

if(ptr == NULL)

{

printf("\nOVERFLOW\n");

return;

}

else

{

ptr -> data = item;

if(front == NULL)

{

front = ptr;

rear = ptr;

front -> next = NULL;

rear -> next = NULL;

}

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

else

{

rear -> next = ptr;

rear = ptr;

rear->next = NULL;

}

}

}

 APPLICATIONS OF QUEUE

There are several algorithms that use queues to give efficient running times. Some

simple examples of queue usage are follows.

 Type declarations for queue-array implementation

struct queue_record

{

unsigned int q_max_size; /* Maximum # of elements */

/* until Q is full */

unsigned int q_front;

unsigned int q_rear;

unsigned int q_size; /* Current # of elements in Q */

element_type *q_array;

};

typedef struct queue_record * QUEUE

 Routine to test whether a queue is empty-array implementation

int

is_empty(QUEUE Q)

{

return(Q->q_size == 0);

}

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Routine to make an empty queue-array implementation

void

make_null (QUEUE Q)

{

Q->q_size = 0;

Q->q_front = 1;

Q->q_rear = 0;

}

 Routines to enqueue-array implementation

unsigned int

succ(unsigned int value, QUEUE Q)

{

if(++value == Q->q_max_size)

value = 0;

return value;

}

void

enqueue(element_type x, QUEUE Q)

{

if(is_full(Q))

error("Full queue");

else

{

Q->q_size++;

Q->q_rear = succ(Q->q_rear, Q

); Q->q_array[Q->q_rear] = x;

}

}

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Other applications

 When jobs are submitted to a printer, they are arranged in order of arrival. Thus,

essentially, jobs sent to a line printer are placed on a queue.

 Virtually every real-life line is (supposed to be) a queue. For instance, lines at

ticket counters are queues, because service is first-come first-served.

 Another example concerns computer networks. There are many network setups of

personal computers in which the disk is attached to one machine, known as the

file server. Users on other machines are given access to files on a first-come first-

served basis, so the data structure is a queue.

 Calls to large companies are generally placed on a queue when all operators are

busy.

 In large universities, where resources are limited, students must sign a waiting list

if all terminals are occupied. The student who has been at a terminal the longest

is forced off first, and the student who has been waiting the longest is the next

user to be allowed on.

	QUEUE ADT
	Fig. 3.27: Data Structure of Queue
	Types of Queue
	Simple Queue or Linear Queue
	Circular Queue
	Priority Queue
	Fig. 3.30 Representation of Priority Queue

	Deque (or, Double Ended Queue)
	Fig. 3.31 Representation of Double Ended Queue

	PRIORITY QUEUES
	Characteristics of a Priority queue
	Types of Priority Queue
	Ascending order priority queue
	Fig. 3.32 Ascending order priority queue Descending order priority queue:

	Representation of priority queue
	Implementation of Priority Queue
	Analysis of complexities using different implementations
	Heap
	Fig. 3.34 Max heap Fig. 3.35 Min heap

	Priority Queue Operations
	Inserting the element in a priority queue (max heap)
	Algorithm 3.18
	Example 3.10

	Removing the minimum element from the priority queue
	Algorithm 3.19:
	Example: 3.11
	Peeking the element from a priority queue

	Applications of Priority Queue

	QUEUE IMPLEMENTATION
	Array implementation of Queue
	Fig. 3.36: Array representation of Queue

	Algorithm to insert any element in a queue
	Algorithm 3.20

	Implementation using C Function:
	Algorithm to delete an element from the queue
	Algorithm 3.21

	Implementation using C Function
	Drawback of array implementation
	Linked List implementation of Queue
	Insertion on Linked Queue
	Algorithm 3.22

	Implementation using C Function (1)

	APPLICATIONS OF QUEUE
	Type declarations for queue-array implementation
	Routine to test whether a queue is empty-array implementation
	Routine to make an empty queue-array implementation
	Routines to enqueue-array implementation
	Other applications

