FERMAT'S THEOREM

Fermat's theorem states the following: if p is a prime and a is a positive integer not divisible by p, then

$$
\mathbf{a}^{\mathrm{p}-1} \equiv 1(\bmod p)
$$

Consider the set of positive integers less than $p:\{1,2,3 . . \mathrm{p}-1\}$
Multiply each element by a modulo p to get the set
$\mathrm{X}=\{\mathrm{a} \bmod \mathrm{p}, 2 \mathrm{a} \bmod \mathrm{p} \ldots(\mathrm{p}-1) \bmod \mathrm{p}\}$.

None of the elements of X is equal to zero because p does not divide a. No two of the integers in X are equal.(p-1) elements of X are all positive integers with no two elements are equal. Multiplying the numbers in both sets and taking the result $\bmod p$ yields.

$$
\begin{aligned}
& \mathrm{a} * 2 \mathrm{a} * \ldots *(\mathrm{p}-1) \mathrm{a} \equiv[(1 * 2 * \ldots *(\mathrm{p}-1)](\bmod \mathrm{p}) \\
& \{1 * 2 * \ldots *(\mathrm{p}-1)\} \mathrm{a}^{\mathrm{p}-1} \equiv[(1 * 2 * \ldots *(\mathrm{p}-1)](\bmod \mathrm{p}) \\
& (\mathrm{p}-1)!\mathrm{a}^{\mathrm{p}-1} \equiv(\mathrm{p}-1)!(\bmod \mathrm{p}) \\
& \quad \mathbf{a}^{\mathrm{p}-1} \equiv \mathbf{1}(\bmod \mathbf{p})
\end{aligned}
$$

Example

$a=7, p=19$
$7^{2}=49 \equiv 11(\bmod 19)$
$7^{4}=121 \equiv 7(\bmod 19)$
$7^{8} \equiv 49 \equiv 11(\bmod 19)$
$7^{16} \equiv 121 \mathrm{~K} 7(\bmod 19)$
$a^{p-1}=7^{18}=7^{16} * 7^{2} \equiv 7 * 11 \equiv 1(\bmod 19$

An alternative form of Fermat's theorem is also useful: If p is prime and a is a positive integer, then

$$
\mathbf{a}^{\mathbf{p}} \equiv \mathbf{a}(\bmod \mathbf{p})
$$

Euler's totient function

It is represented as $\phi(n)$.Euler's totient function is defined as the number of positive integers less than n and relatively prime to $n . \phi(1)=1$

It should be clear that for a prime number p

$$
\phi(p)=p-1
$$

Suppose that we have two prime numbers p and q, with p not equal to q. Then we can show that

$$
\begin{aligned}
& n=p q \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \varnothing(\mathrm{n})=(\mathrm{pq}-1)-[(\mathrm{q}-1)+(\mathrm{p}-1)] \\
& =\mathrm{pq}-(\mathrm{p}+\mathrm{q})+1 \\
& =(\mathrm{p}-1) *(\mathrm{q}-1) \\
& =\varnothing(\mathrm{p})^{*} \phi(\mathrm{q})
\end{aligned}
$$

To determine $\mathrm{f}(35)$, we list all of the positive integers less than 35 that are relatively prime to it:
$1,2,3,4,6,8,9,11,12,13,16,17,18$
$19,22,23,24,26,27,29,31,32,33,34$
There are 24 numbers on the list, so $f(35)=24$.
$\mathrm{f}(21)=\mathrm{f}(3) * \mathrm{f}(7)=(3-1) *(7-1)=2 * 6=12$

