2.3 EULER'S EQUATION ALONG A STREAMLINE - BERNOULLI'S EQUATION - APPLICATIONS

EULER'S EQUATION OF MOTION

In this equation of motion the forces due to gravity and pressure are taken in to consideration. This is derived by considering the motion of the fluid element along a stream- line as:

Consider a stream-line in which flow is taking place in s- direction. Consider a cylindrical element of cross-section dA and length ds.

The forces acting on the cylindrical element are:

1. Pressure force pdA in the direction of flow.
2. Pressure force $\left(p+\frac{\partial p}{\partial s} d s\right) d A$ opposite to the direction of flow
3. Weight of element $\rho \mathrm{g}$ dA.ds

Let θ is the angle between the direction of flow and the line of action of the weight of the element.

The resultant force on the fluid element in the direction of S must be equal to the mass of fluid element \times acceleration in the direction of s.

$$
\begin{align*}
& \therefore \quad p d A-\left(p+\frac{\partial p}{\partial s} a\right. \tag{1}\\
&=\rho d A d s \times a_{s}
\end{align*}
$$

$$
d A d s \cos \theta
$$

Whereas is the acceleration in the direction of s.
Now

$$
\begin{aligned}
& a_{s}=\frac{d v}{d t}, \text { where } v \text { is a function of } s \text { and } t . \\
&=\frac{\partial v}{\partial s} \frac{d s}{d t}+\frac{\partial v}{\partial t}=\frac{v \partial v}{\partial s}+\frac{\partial v}{\partial t}\left\{\because \frac{d s}{d t}\right.=v\} \\
& \text { If the flow is steady, } \frac{\partial v}{\partial t}=0 \\
& \therefore \quad a_{s}=\frac{v \partial v}{\partial s}
\end{aligned}
$$

Substituting the value of as in equation (1) and simplifying, we get

$$
-\frac{\partial p}{\partial s} d s d A-\rho g d A d s \cos \theta=\rho d A d s \times \frac{\partial v}{\partial s}
$$

$$
\text { Dividing by } \rho d s d A,-\frac{\partial p}{\rho \partial s}-g \cos \theta=\frac{v \partial v}{\partial s}
$$

or

$$
\frac{\partial p}{\rho \partial s}+g \cos \theta+v \frac{\partial v}{\partial s}=0
$$

$$
\text { But from Fig., we have } \cos \theta=\frac{d z}{d s}
$$

$$
\therefore \quad \frac{1}{\rho} \frac{d p}{d s}+g \frac{d z}{d s}+\frac{v d v}{d s}=0 \quad \text { or } \quad \frac{d p}{\rho}+g d z+v d v=0
$$

or

$$
\frac{d p}{\rho}+g d z+v d v=0
$$

\therefore This equation is known as Euler"s equation of motion.

BERNOULLI'S EQUATION FROM EULER'S EQUATION

Bernoulli"s equation is obtained by integrating the Euler"s equation of motion as

$$
\begin{array}{ll}
& \int \frac{d p}{\rho}+\int g d z+\int v d v=\text { constant } \\
\therefore & \frac{p}{\rho}+g z+\frac{v^{2}}{2}=\text { constant } \\
\text { or } & \frac{p}{\rho g}+z+\frac{v^{2}}{2 g}=\text { constant } \\
\text { or } & \frac{p}{\rho g}+\frac{v^{2}}{2 g}+z=\text { constant }
\end{array}
$$

The above equation is Bernoullies equation in which
$\frac{p}{\rho g}=$ Pressure energy per unit weight of fluid or pressure head.
$\frac{v^{2}}{2 g}=$ Kinetic energy per unit weight of fluid or Kinetic head.
$Z=$ Potential energy per unit weight of fluid or Potential head.

The following are the assumptions made in the derivation of Bernoullies equation.
i. The fluid is ideal. i.e. Viscosity is zero.
ii. The flow is steady.
iii. The flow is incompressible.
iv. The flow is irrotational.

PROBLEM 1. Water is flowing through a pipe of 5 cm dia. Under a pressure of $29.43 \mathrm{~N} / \mathrm{cm} 2$ and with mean velocity of $2 \mathrm{~m} / \mathrm{sec}$. find the total head or total energy per unit weight of water at a cross-section, which is 5 m above datum line.

Given:

$$
\begin{array}{ll}
\text { dia. Of pipe } & =5 \mathrm{~cm}=0.05 \mathrm{~m} \\
\text { Pressure } \mathrm{P} & =29.43 \mathrm{~N} / \mathrm{cm}^{2}=29.43 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
\text { Velocity } \mathrm{V} & =2 \mathrm{~m} / \mathrm{sec} \\
\text { Datum head } Z & =5 \mathrm{~m}
\end{array}
$$

Total head $=$ Pressure head + Kinetic head + Datum head

$$
\begin{aligned}
& \text { Pressure head }=\frac{\mathrm{P}}{\rho g}=\frac{29.43 \times 10^{4}}{1000 \times 9.81}=30 \mathrm{~m} \\
& \text { Kinetic head }=\frac{V^{2}}{2 g}=\frac{2 \times 2}{2 \times 9.81}=0.204 \mathrm{~m}
\end{aligned}
$$

Datum head $=\mathrm{Z}=5 \mathrm{~m}$

$$
\frac{p}{\rho g}+\frac{V^{2}}{2 g}+Z=30+0.204+5=35.204 m
$$

Total head $=35.204 \mathrm{~m}$

PROBLEM 2. A pipe through which water is flowing is having diameters 20 cms and 10 cms at cross- sections 1 and 2 respectively. The velocity of water at section 1 is 4 $\mathrm{m} / \mathrm{sec}$. Find the velocity head at section 1 and 2 and also rate of discharge?

Given: $\mathrm{D} 1=20 \mathrm{cms}=0.2 \mathrm{~m}$
$\therefore \quad$ Area, $A_{1}=\frac{\pi}{4} D_{1}{ }^{2}=\frac{\pi}{4}(.2)^{2}=0.0314 \mathrm{~m}^{2}$

$$
\begin{aligned}
V_{1} & =4.0 \mathrm{~m} / \mathrm{s} \\
D_{2} & =0.1 \mathrm{~m} \\
\therefore \quad A_{2} & =\frac{\pi}{4}(.1)^{2}=.00785 \mathrm{~m}^{2}
\end{aligned}
$$

i) Velocity head at section 1

$$
=\frac{V_{1}^{2}}{2 g}=\frac{4.0 \times 4.0}{2 \times 9.81}=\mathbf{0 . 8 1 5} \mathrm{m} .
$$

ii) Velocity head at section 2

$$
=V_{2}^{2} / 2 g
$$

To find V_{2}, apply continuity equation

$$
\mathrm{A} 1 \mathrm{~V} 1=\mathrm{A} 2 \mathrm{~V} 2
$$

$$
V_{2}=\frac{A_{1} V_{1}}{A_{2}}=\frac{.0314}{.00785} \times 4.0=16.0 \mathrm{~m} / \mathrm{s}
$$

Velocity head at section 2

$$
=\frac{V_{2}^{2}}{2 g}=\frac{16.0 \times 16.0}{2 \times 9.81}=\mathbf{8 3 . 0 4 7} \mathrm{m} .
$$

iii) Rate of discharge

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{A} 1 \mathrm{~V} 1=\mathrm{A} 2 \mathrm{~V} 2 \\
& =0.0314 \times 4=0.1256 \mathrm{~m} 3 / \mathrm{sec}
\end{aligned}
$$

$$
Q=125.6 \text { Liters/sec }
$$

PROBLEM 3. Water is flowing through a pipe having diameters 20 cms and 10 cms at sections 1 and 2 respectively. The rate of flow through pipe is 35 liters $/ \mathrm{sec}$. The section 1 is 6 m above the datum and section 2 is 4 m above the datum. If the pressure at section 1 is $39.24 \mathrm{~N} / \mathrm{cm} 2$. Find the intensity of pressure at section 2 ?

Given: At section $1 \mathrm{D} 1=20 \mathrm{~cm}=0.2 \mathrm{~m}$
At section 1, $D_{1}=20 \mathrm{~cm}=0.2 \mathrm{~m}$

$$
\begin{aligned}
A_{1} & =\frac{\pi}{4}(.2)^{2}=.0314 \mathrm{~m}^{2} \\
p_{1} & =39.24 \mathrm{~N} / \mathrm{cm}^{2} \\
& =39.24 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
z_{1} & =6.0 \mathrm{~m}
\end{aligned}
$$

At section 2, $D_{2}=0.10 \mathrm{~m}$

$$
\begin{aligned}
A_{2} & =\frac{\pi}{4}(0.1)^{2}=.00785 \mathrm{~m}^{2} \\
z_{2} & =4 \mathrm{~m} \\
p_{2} & =?
\end{aligned}
$$

Rate of flow, $Q=35 \mathrm{lit} / \mathrm{s}=\frac{35}{1000}=.035 \mathrm{~m}^{3} / \mathrm{s}$

$$
\begin{aligned}
& Q=A_{1} V_{1}=A_{2} V_{2} \\
& V_{1}=\frac{Q}{A_{1}}=\frac{.035}{.0314}=1.114 \mathrm{~m} / \mathrm{s} \\
& V_{2}=\frac{Q}{A_{2}}=\frac{.035}{.00785}=4.456 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Applying Bernoulli's equation at sections 1 and 2 , we get

$$
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$

$$
\begin{aligned}
& \frac{39.24 \times 10^{4}}{1000 \times 9.81}+\frac{(1.114)^{2}}{2 \times 9.81}+6.0=\frac{p_{2}}{1000 \times 9.81}+\frac{(4.456)^{2}}{2 \times 9.81}+4.0 \\
& 40+0.063+6.0=\frac{p_{2}}{9810}+1.012+4.0 \\
& 46.063=\frac{p_{2}}{9810}+5.012 \\
& \frac{p_{2}}{9810}=46.063-5.012=41.051 \\
& p_{2}=41.051 \times 9810 \mathrm{~N} / \mathrm{m}^{2} \\
&=\frac{41.051 \times 9810}{10^{4}} \mathrm{~N} / \mathrm{cm}^{2}=\mathbf{4 0 . 2 7 ~ N} / \mathrm{cm}^{2} .
\end{aligned}
$$

PROBLEM 4. Water is flowing through a pipe having diameter 300 mm and 200 mm at the bottom and upper end respectively. The intensity of pressure at the bottom end is $24.525 \mathrm{~N} / \mathrm{cm}^{2}$ and the pressure at the upper end is $9.81 \mathrm{~N} / \mathrm{cm}^{2}$. Determine the difference in datum head if the rate of flow through is 40lit/sec?

Given :
Section 1,

$$
\begin{aligned}
& D_{1}=300 \mathrm{~mm}=0.3 \mathrm{~m} \\
& p_{1}=24.525 \mathrm{~N} / \mathrm{cm}^{2}=24.525 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
& D_{2}=200 \mathrm{~mm}=0.2 \mathrm{~m} \\
& p_{2}=9.81 \mathrm{~N} / \mathrm{cm}^{2}=9.81 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Section 2,

$$
\text { Rate of flow } \quad=40 \mathrm{lit} / \mathrm{s}
$$

$$
Q=\frac{40}{1000}=0.04 \mathrm{~m}^{3} / \mathrm{s}
$$

Now $\quad A_{1} V_{1}=A_{2} V_{2}=$ rate of flow $=0.04$

$$
\begin{aligned}
\therefore \quad V_{1} & =\frac{.04}{A_{1}}=\frac{.04}{\frac{\pi}{4} D_{1}^{2}}=\frac{0.04}{\frac{\pi}{4}(0.3)^{2}}=0.5658 \mathrm{~m} / \mathrm{s} \\
& \simeq 0.566 \mathrm{~m} / \mathrm{s} \\
V_{2} & =\frac{.04}{A_{2}}=\frac{.04}{\frac{\pi}{4}\left(D_{2}\right)^{2}}=\frac{0.04}{\frac{\pi}{4}(0.2)^{2}}=1.274 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Applying Bernoullies equation at sections 1 and 2

$$
\begin{gathered}
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2} \\
\frac{24.525 \times 10^{4}}{1000 \times 9.81}+\frac{.566 \times .566}{2 \times 9.81}+z_{1}=\frac{9.81 \times 10^{4}}{1000 \times 9.81}+\frac{(1.274)^{2}}{2 \times 9.81}+z_{2}
\end{gathered}
$$

$$
\begin{array}{rlrl}
& & 25+.32+z_{1} & =10+1.623+z_{2} \\
& & 25.32+z_{1} & =11.623+z_{2} \\
& z_{2}-z_{1} & =25.32-11.623=13.697=13.70 \mathrm{~m}
\end{array}
$$

$$
\therefore \text { Difference in datum head }=z_{2}-z_{1}=\mathbf{1 3 . 7 0} \mathbf{~ m . ~ A n s . ~}
$$

PROBLEM 5. The water is flowing through a taper pipe of length 100 m having diameters 600 mm at the upper end and 300 mm at the lower end, at the rate of $501 \mathrm{ts} / \mathrm{sec}$. the pipe has a slope of 1 in 30 . Find the pressure at the lower end, if the pressure at the higher level is $19.62 \mathrm{~N} / \mathrm{cm}^{2}$?

Given: Length of pipe $L=100 \mathrm{~m}$
Dia. At the upper end $D_{1}=600 \mathrm{~mm}=0.6 \mathrm{~m}$

$$
\begin{aligned}
\therefore \text { Area, } A_{1} & =\frac{\pi}{4} D_{1}^{2}=\frac{\pi}{4} \times(.6)^{2} \\
& =0.2827 \mathrm{~m}^{2} \\
p_{1} & =\text { pressure at upper end } \\
& =19.62 \mathrm{~N} / \mathrm{cm}^{2}
\end{aligned}
$$

Dia. at the lower end $\mathrm{D} 2=300 \mathrm{~mm}=0.3 \mathrm{~m}$
\therefore Area, $A_{2}=\frac{\pi}{4} D_{2}{ }^{2}=\frac{\pi}{4}(.3)^{2}=0.07068 \mathrm{~m}$

$$
Q=\text { rate of flow }=50 \text { litres } / \mathrm{s}=\frac{50}{1000}=0.05 \mathrm{~m}^{3} / \mathrm{s}
$$

Let the datum line is passing through the centre of the lower end. Then $Z_{2}=0$
As slope is 1 in 30 means

$$
z_{1}=\frac{1}{30} \times 100=\frac{10}{3} \mathrm{~m}
$$

Also we know

$$
Q=A_{1} V_{1}=A_{2} V_{2}
$$

$$
\begin{aligned}
& V_{1}=\frac{Q}{A}=\frac{0.05}{.2827}=0.1768 \mathrm{~m} / \mathrm{sec}=0.177 \mathrm{~m} / \mathrm{s} \\
& V_{2}=\frac{Q}{A_{2}}=\frac{0.5}{.07068}=0.7074 \mathrm{~m} / \mathrm{sec}=0.707 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Applying Bernoullies equation at sections 1 and 2

$$
\begin{gathered}
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2} \\
\frac{19.62 \times 10^{4}}{1000 \times 9.81}+\frac{.177^{2}}{2 \times 9.81}+\frac{10}{3}=\frac{p_{2}}{\rho g}+\frac{.707^{2}}{2 \times 9.81}+0 \\
20+0.001596+3.334=\frac{p_{2}}{\rho g}+0.0254
\end{gathered}
$$

$$
\begin{gathered}
23.335-0.0254=\frac{p_{2}}{1000 \times 9.81} \\
p_{2}=23.3 \times 9810 \mathrm{~N} / \mathrm{m}^{2}=228573 \mathrm{~N} / \mathrm{m}^{2}=\mathbf{2 2 . 8 5 7} \mathrm{N} / \mathrm{cm}^{2} . \text { Ans. }
\end{gathered}
$$

