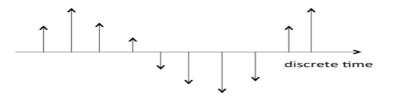
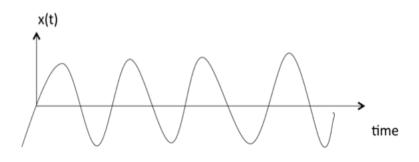

Classification of Signals

Signals are classified into the following categories:

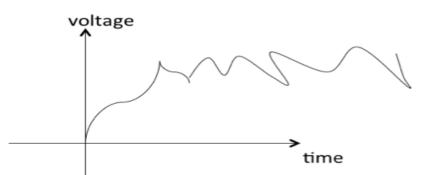

- Continuous Time and Discrete Time Signals
- Deterministic and Non-deterministic Signals
- Even and Odd Signals
- Periodic and Aperiodic Signals
- Energy and Power Signals
- Real and Imaginary Signals

Continuous Time and Discrete Time Signals

A signal is said to be continuous when it is defined for all instants of time.

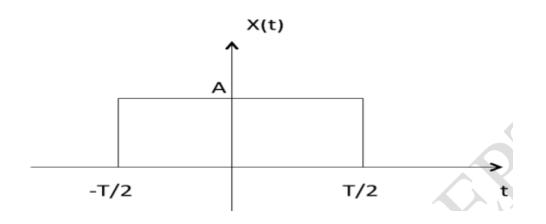


A signal is said to be discrete when it is defined at only discrete instants of time



Deterministic and Non-deterministic Signals

A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time. Or, signals which can be defined exactly by a mathematical formula are known as deterministic signals.


A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of time. Non-deterministic signals are random in nature hence they are called random signals. Random signal cannot be described by a mathematical equation. They are modelled in probabilistic terms.

Even and Odd Signals

A signal is said to be even when it satisfies the condition x(t) = x(-t)

Example 1: t^2 , t^4 ... cost etc. Let $x(t) = t^2$ $x(-t) = (-t)^2 = t^2 = x(t)$ $\therefore t^2$ is evenfunction **Example 2:** As shown in the following diagram, rectangle function x(t) = x(-t) so it is also even function.

A signal is said to be odd when it satisfies the condition x(t) = -x(-t)

Example: t, t³ ... And sin t

Let $x(t) = \sin t$

 $\mathbf{x}(\mathsf{-t}) = \sin(\mathsf{-t}) = -\sin t = -\mathbf{x}(t)$

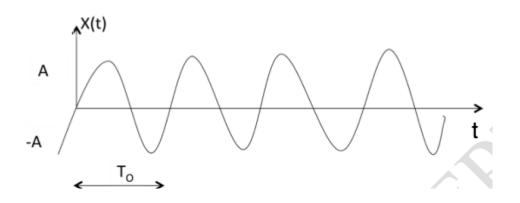
 \therefore sin t is odd function.

Any function f(t) can be expressed as the sum of its even function $f_e(t)$ and odd function $f_0(t)$.

$$f(t) = f_{e}(t) + f_{0}(t)$$

where

 $f_{\rm e}(t) = \frac{1}{2}[f(t) + f(-t)]$


Periodic and Aperiodic Signals

A signal is said to be periodic if it satisfies the condition x(t) = x(t + T) or x(n) = x(n + N).

Where

T = fundamental time period,

1/T = f = fundamental frequency.

The above signal will repeat for every time interval T0 hence it is periodic with period T0.

Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

Energy
$$(E) = \int_{-\infty}^{\infty} x^2(t) dt$$

A signal is said to be power signal when it has finite power.

$$Power(P) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^2(t) dt$$

NOTE: A signal cannot be both, energy and power simultaneously. Also, a signal may be neither energy nor power signal.

Power of energy signal = 0

Energy of power signal $= \infty$

Real and Imaginary Signals

A signal is said to be real when it satisfies the condition $x(t) = x^*(t)$ A signal is said to be odd when it satisfies the condition $x(t) = -x^*(t)$ Example:

If x(t)=3 then $x^*(t)=3^*=3$ here x(t) is a real signal.

If x(t)=3j then $x^*(t)=3j^*=-3j=-x(t)$ hence x(t) is a odd signal.

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, real part should be zero.