
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

CS3492-DATABASE MANAGEMENT SYSTEMS 

 

 

10. EMBEDDED SQL 

• Embedded SQL is a method of inserting inline SQL statements or queries into the code 

of a programming language, which is known as a host language. 

• This is the simplest approach to embed SQL statements directly into the source code 

files that will be used to create an application. This technique is referred to as 

embedded SQL programming. 

• Structure of embedded SQL defines step by step process of establishing a connection 

with DB and executing the code in the DB within the high level language. 

• High level programming language compilers cannot interpret SQL statements. 

• Hence source code files containing embedded SQL statements must be preprocessed 

before compiling. 

• Thus each SQL statement coded in a high level programming language source code file 

must be prefixed with the keywords EXEC SQL and terminated with either a semicolon 

or the keyword END_EXEC. 

Connection to Database: 

•  This is the first step while writing a query in high level languages. First 

connection to the DB that we are accessing needs to be established. 

• This can be done using the keyword CONNECT. But it has to precede with ‗EXEC SQLto 

indicate that it is a SQL statement. 

EXEC SQL CONNECT db_name; 

EXEC SQL CONNECT HR_USER; //connects to DB HR_USER 

• Once connection is established with DB, we can perform DB transactions. 

Host variables 

• Database manager cannot work directly with high level programming language 

variables. 

• Instead, it must be special variables known as host variables to move data between 

an application and a database. 

Two types of host variables. 

• Input host variables: Transfer data to database. 

• Output host variable :Receives data from database 

Host variables are ordinary programming language., They must be defined within a special 

section known as declare section. 

EXEC SQL BEGIN DECLARE SECTION; 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

CS3492-DATABASE MANAGEMENT SYSTEMS 

 

 

int STD_ID; 

char STD_NAME [15]; 

char ADDRESS[20]; 

EXEC SQL END DECLARE SECTION; 

• Each host variable must be assigned a unique name even though declared in different 

declaration section. 

The following code is a simple embedded SQL program, written in C. 

• The program prompts the user for an order number, retrieves the customer number, 

salesperson, and status of the order, and displays the retrieved information on the 

screen. 
 

 

 
12. DYNAMIC SQL 

• Static or Embedded SQL are SQL statements in an application that do not change at 

runtime and, therefore, can be hard-coded into the application. Dynamic SQL is SQL 

statements that are constructed at runtime; for example, the application may allow 

users to enter their own queries. 

• Dynamic SQL is a programming technique that enables you to build SQL statements 

dynamically at runtime. You can create more general purpose, flexible applications by 

using dynamic SQL 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

CS3492-DATABASE MANAGEMENT SYSTEMS 

 

 

Since query needs to be prepared at run time, in addition to the structures discussed in 

embedded SQL, we have three more clauses in dynamic SQL. These are mainly used to 

build the query and execute them at run time. 

PREPARE 
 

Since dynamic SQL builds a query at run time, as a first step we need to 

capture all the inputs from the user. It will be stored in a string variable. Depending on the 

inputs received from the user, string variable is appended with inputs and SQL keywords. 

These SQL like string statements are then converted into SQL query. This is done by using 

PREPARE statement. 

EXECUTE 
 

 
in DB. 

This statement is used to compile and execute the SQL statements prepared 

EXEC SQL EXECUTE sql_query; 

 

EXECUTE IMMEDIATE 

This statement is used to prepare SQL statement as well as execute the SQL 

statements in DB. It performs the task of PREPARE and EXECUTE in a single line. 

EXEC SQL EXECUTE IMMEDIATE :sql_stmt; 
 

Example 

#include stdio.h 

#include conio.h 

int main(){ 

EXEC SQL INCLUDE SQLCA; 

EXEC SQL BEGIN DECLARE SECTION; 

int STD_ID; 

char *STD_NAME; 

int CLASS_ID; 

char *sql_stmt; 

char *sql_query; 

EXEC SQL END DECLARE SECTION; 

EXEC WHENEVER NOT FOUND GOTO error_msg1; 

EXEC WHENEVER SQLERROR GOTO error_msg2; 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

CS3492-DATABASE MANAGEMENT SYSTEMS 

 

 

printf("Enter the Student name:"); 

scanf("%s", STD_Name); 

printf("Enter the Class ID:"); 

scanf("%d", &CLASS_ID); 

sql_stmt = "SELECT STD_ID FROM STUDENT "; 

if (strcmp(STD_NAME, ' ') != 0) 

{ 

sql_stmt = sql_stmt || " WHERE STD_NAME = :STD_NAME"; 

} 

else if (CLASS_ID > 0) 

{ 

sql_stmt = sql_stmt || " WHERE CLASS_ID = :CLASS_ID"; 

} 

EXEC SQL PREPARE sql_queryFROM :sql_stmt; 

EXEC SQL EXECUTE sql_query; 

printf("STUDENT ID:%d", STD_ID); 

exit(0); 
 

 
Output 

Assume the table 

STUDENT 

STD_ID STD_NAME CLASS_ID CITY CONTACT_NO 

CS001 ARUN 101 NAGERCOIL XXX 

CS002 ASHA 102 VALLIYOR XXX 

CS025 MAHESH 202 TIRUNELVELI XX 

 
 

 
Enter the Student name : ASHA 

(STD_NAME = ASHA ) 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

CS3492-DATABASE MANAGEMENT SYSTEMS 

 

 

Enter the Class ID: 202 

(CLASS_ID=202) 

(If give one valid string as student name the query will be constructed like this:) 

SELECT STD_ID FROM STUDENT WHERE STD_NAME = :STD_NAME 

And the output will be 

CS002 

Else 

Enter the Student name : PRIYA 

(STD_NAME = PRIYA) 

If CLASS_ID >0 the query will be framed like 

SELECT STD_ID FROM STUDENT WHERE CLASS_ID = :CLASS_ID 

And the output will be 

CS025 


