
 UNIT III NOSQL DATABASES 9
 NoSQL – CAP Theorem – Sharding - Document based – MongoDB Operation:

 Insert, Update, Delete, Query, Indexing, Application, Replication, Sharding–Cassandra:
 Data Model, Key Space, Table Operations, CRUD Operations, CQL Types – HIVE: Data
 types, Database Operations, Partitioning – HiveQL – OrientDB Graph database –
 OrientDB Features

 Cassandra:
 Apache Cassandra is a highly scalable, high performance, distributed NoSQL

 database. Cassandra is designed to handle huge amounts of data across many commodity
 servers, providing high availability without a single point of failure.
 Cassandra is a NoSQL database

 NoSQL database is Non-relational database. It is also called Not Only SQL. It is a
 database that provides a mechanism to store and retrieve data other than the tabular
 relations used in relational databases. These databases are schema-free, support easy
 replication, have simple API, eventually consistent, and can handle huge amounts of data.
 Important Points of Cassandra
 ● Cassandra is a column-oriented database.
 ● Cassandra is scalable, consistent, and fault-tolerant.
 ● Cassandra is created at Facebook. It is totally different from relational database

 management systems.
 ● Cassandra is being used by some of the biggest companies like Facebook, Twitter,

 Cisco, Rackspace, ebay, Twitter, Netflix, and more.

 Data Model
 Data model in Cassandra is totally different from normally we see in RDBMS.

 Cluster
 Cassandra and other dynamo-based databases distribute data throughout the

 cluster by using consistent hashing. The rowkey (analogous to a primary key in an
 RDBMS) is hashed. Each node is allocated a range of hash values, and the node that has
 the specific range for a hashed key value takes responsibility for the initial placement of
 that data.

 In the default Cassandra partitioning scheme, the hash values range from -263 to
 263-1. Therefore, if there were four nodes in the cluster and we wanted to assign equal
 numbers of hashes to each node, then the hash ranges for each would be approximately as
 follows:

 We usually visualize the cluster as a ring: the circumference of the ring represents
 all the possible hash values, and the location of the node on the ring represents its area of
 responsibility. Figure illustrates simple consistent hashing: the value for a rowkey is
 hashed, which determines its position on “the ring.” Nodes in the cluster take
 responsibility for ranges of values within the ring, and therefore take ownership of
 specific rowkey values.

 The four-node cluster in Figure 8-10 is well balanced because every node is
 responsible for hash ranges of similar magnitude. But we risk unbalancing the cluster as
 we add nodes. If we double the number of nodes in the cluster, then we can assign the
 new nodes at points on the ring between existing nodes and the cluster will remain
 balanced. However, doubling the cluster is usually impractical: it’s more economical to
 grow the cluster incrementally.

 Early versions of Cassandra had two options when adding a new node. We could
 either remap all the hash ranges, or we could map the new node within an existing range.
 In the first option we obtain a balanced cluster, but only after an expensive rebalancing
 process. In the second option the cluster becomes unbalanced; since each node is

 responsible for the region of the ring between itself and its predecessor, adding a new
 node without changing the ranges of other nodes essentially splits a region in half. Figure
 shows how adding a node to the cluster can unbalance the distribution of hash key ranges.

 Order-Preserving Partitioning
 The Cassandra partitioner determines how keys are distributed across nodes. The

 default partitioner uses consistent hashing, as described in the previous section.
 Cassandra also supports order-preserving partitioners that distribute data across the nodes
 of the cluster as ranges of actual (e.g., not hashed) rowkeys. This has the advantage of
 isolating requests for specific row ranges to specific machines, but it can lead to an
 unbalanced cluster and may create hotspots, especially if the key value is incrementing.
 For instance, if the key value is a timestamp and the order-preserving partitioner is
 implemented, then all new rows will tend to be created on a single node of the cluster. In
 early versions of Cassandra, the order-preserving petitioner might be warranted to
 optimize range queries that could not be satisfied in any other way; however, following
 the introduction of secondary indexes, the order-preserving petitioner is maintained
 primarily for backward compatibility, and Cassandra documentation recommends against
 its use in new applications.

 Key Space
 Keyspace is the outermost container for data in Cassandra. A keyspace is an object

 that is used to hold column families, user defined types. A keyspace is like a RDBMS
 database which contains column families, indexes, user defined types, data center
 awareness, strategy used in keyspace, replication factor, etc.

 Following are the basic attributes of Keyspace in Cassandra:
 ● Replication factor: It specifies the number of machines in the cluster that will

 receive copies of the same data.

 ● Replica placement Strategy: It is a strategy which specifies how to place replicas in
 the ring.

 ● There are three types of strategies such as:
 1) Simple strategy (rack-aware strategy)
 2) old network topology strategy (rack-aware strategy)
 3) network topology strategy (datacenter-shared strategy)
 In Cassandra, "Create Keyspace" command is used to create keyspace.

 Cassandra Create Keyspace
 Cassandra Query Language (CQL) facilitates developers to communicate with

 Cassandra. The syntax of Cassandra query language is very similar to SQL. In Cassandra,
 "Create Keyspace" command is used to create keyspace.
 Syntax:
 CREATE KEYSPACE <identifier> WITH <properties>

 Example:
 Let's take an example to create a keyspace named "StudentDB".

 CREATE KEYSPACE StudentDB WITH replication = {'class':'SimpleStrategy',
 'replication_factor' : 3};
 Different components of Cassandra Keyspace
 Strategy: There are two types of strategy declaration in Cassandra syntax:
 ● Simple Strategy: Simple strategy is used in the case of one data center. In this

 strategy, the first replica is placed on the selected node and the remaining nodes are
 placed in clockwise direction in the ring without considering rack or node location.

 ● Network Topology Strategy: This strategy is used in the case of more than one data
 center. In this strategy, you have to provide a replication factor for each data center
 separately.

 Using a Keyspace
 To use the created keyspace, you have to use the USE command.

 Syntax:
 USE <identifier>

 Cassandra Alter Keyspace
 The "ALTER keyspace" command is used to alter the replication factor, strategy

 name and durable writes properties in created keyspace in Cassandra.
 Syntax:

 ALTER KEYSPACE <identifier> WITH <properties>
 Cassandra Drop Keyspace

 In Cassandra, "DROP Keyspace" command is used to drop keyspaces with all the
 data, column families, user defined types and indexes from Cassandra.
 Syntax:

 DROP keyspace KeyspaceName ;

 Table Operations, - CRUD Operations
 Cassandra Create Table

 In Cassandra, CREATE TABLE command is used to create a table. Here, column
 family is used to store data just like table in RDBMS. So, you can say that CREATE
 TABLE command is used to create a column family in Cassandra.
 Syntax:

 CREATE TABLE tablename(
 column1 name datatype PRIMARYKEY,
 column2 name data type,
 column3 name data type.
)

 There are two types of primary keys:
 1. Single primary key: Use the following syntax for single primary key.

 Primary key (ColumnName)
 2. Compound primary key: Use the following syntax for a single primary key.

 Primary key(ColumnName1,ColumnName2 . . .)
 Example:

 Let's take an example to demonstrate the CREATE TABLE command.
 Here, we are using the already created Keyspace "StudentDB".
 CREATE TABLE student(
 student_id int PRIMARY KEY,
 student_name text,
 student_city text,
 student_fees varint,
 student_phone varint
);
 SELECT * FROM student;
 Cassandra Alter Table

 ALTER TABLE command is used to alter the table after creating it. You can use
 the ALTER command to perform two types of operations:
 ● Add a column
 ● Drop a column

 Syntax:
 ALTER (TABLE | COLUMNFAMILY) <tablename> <instruction>
 Adding a Column

 You can add a column in the table by using the ALTER command. While adding
 column, you have to aware that the column name is not conflicting with the existing
 column names and that the table is not defined with compact storage option.
 Syntax:

 ALTER TABLE table name ADD new column datatype;
 After using the following command:

 ALTER TABLE student ADD student_email text;
 A new column is added. You can check it by using the SELECT command.
 Dropping a Column

 You can also drop an existing column from a table by using ALTER command.
 You should check that the table is not defined with compact storage option before
 dropping a column from a table.
 Syntax:

 ALTER table name DROP column name;
 Example:
 After using the following command:

 ALTER TABLE student DROP student_email;
 Now you can see that a column named "student_email" is dropped now. If you want to
 drop the multiple columns, separate the column name by ",".
 Cassandra DROP table

 DROP TABLE command is used to drop a table.
 Syntax:

 DROP TABLE <tablename>
 Example:

 After using the following command:
 DROP TABLE student;
 The table named "student" is dropped now. You can use DESCRIBE command to

 verify if the table is deleted or not. Here the student table has been deleted; you will not
 find it in the column families list.
 Cassandra Truncate Table

 TRUNCATE command is used to truncate a table. If you truncate a table, all the
 rows of the table are deleted permanently.
 Syntax:

 TRUNCATE <tablename>

 Cassandra Batch
 In Cassandra BATCH is used to execute multiple modification statements (insert,

 update, delete) simultaneously. It is very useful when you have to update some column as
 well as delete some of the existing.
 Syntax:

 BEGIN BATCH
 <insert-stmt>/ <update-stmt>/ <delete-stmt>
 APPLY BATCH

 Use of WHERE Clause
 WHERE clause is used with SELECT command to specify the exact location from

 where we have to fetch data.
 Syntax:

 SELECT FROM <table name> WHERE <condition>;
 SELECT * FROM student WHERE student_id=2;

 Cassandra Update Data
 UPDATE command is used to update data in a Cassandra table. If you see no

 result after updating the data, it means data is successfully updated otherwise an error
 will be returned. While updating data in Cassandra table, the following keywords are
 commonly used:
 ● Where: The WHERE clause is used to select the row that you want to update.
 ● Set: The SET clause is used to set the value.
 ● Must: It is used to include all the columns composing the primary key.
 Syntax:

 UPDATE <tablename>
 SET <column name> = <new value>
 <column name> = <value>....
 WHERE <condition>

 Cassandra DELETE Data
 DELETE command is used to delete data from Cassandra table. You can delete the

 complete table or a selected row by using this command.
 Syntax:

 DELETE FROM <identifier> WHERE <condition>;
 Delete an entire row

 To delete the entire row of the student_id "3", use the following command:
 DELETE FROM student WHERE student_id=3;

 Delete a specific column name
 Example:

 Delete the student_fees where student_id is 4.
 DELETE student_fees FROM student WHERE student_id=4;

 HAVING Clause in SQL
 The HAVING clause places the condition in the groups defined by the GROUP

 BY clause in the SELECT statement. This SQL clause is implemented after the 'GROUP
 BY' clause in the 'SELECT' statement. This clause is used in SQL because we cannot use
 the WHERE clause with the SQL aggregate functions. Both WHERE and HAVING
 clauses are used for filtering the records in SQL queries.
 Syntax of HAVING clause in SQL

 SELECT column_Name1, column_Name2, , column_NameN
 aggregate_function_name(column_Name) GROUP BY
 Example:

 SELECT SUM(Emp_Salary), Emp_City FROM Employee GROUP BY
 Emp_City;
 the following query with the HAVING clause in SQL:

 SELECT SUM(Emp_Salary), Emp_City FROM Employee GROUP BY
 Emp_City HAVING SUM(Emp_Salary)>12000;
 MIN Function with HAVING Clause:

 If you want to show each department and the minimum salary in each department,
 you have to write the following query:
 SELECT MIN(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_Dept;
 MAX Function with HAVING Clause:
 SELECT MAX(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_Dept;
 AVERAGE CLAUSE:
 SELECT AVG(Emp_Salary), Emp_Dept FROM Employee_Dept GROUP BY
 Emp_Dept;

 SQL ORDER BY Clause
 ● Whenever we want to sort the records based on the columns stored in the tables of the

 SQL database, then we consider using the ORDER BY clause in SQL.
 ● The ORDER BY clause in SQL will help us to sort the records based on the specific

 column of a table. This means that all the values stored in the column on which we are
 applying the ORDER BY clause will be sorted, and the corresponding column values
 will be displayed in the sequence in which we have obtained the values in the earlier
 step.

 Syntax to sort the records in ascending order:
 SELECT ColumnName1,...,ColumnNameN FROM TableName ORDER BY

 ColumnName ASC;
 Syntax to sort the records in descending order:

 SELECT ColumnName1,...,ColumnNameN FROM TableName ORDER BY
 ColumnNameDESC;
 Syntax to sort the records in ascending order without using ASC keyword:

 SELECT ColumnName1,...,ColumnNameN FROM TableName ORDER BY
 ColumnName;

 CQL Types
 CQL defines built-in data types for columns. The counter type is unique.

 CQL
 Type

 Constants
 supported

 Description

 ascii strings US-ASCII character string

 bigint integers 64-bit signed long

 blob blobs Arbitrary bytes (no validation), expressed as
 hexadecimal

 boolean booleans true or false

 counter integers Distributed counter value (64-bit long)

 date strings Value is a date with no corresponding time value;
 Cassandra encodes date as a 32-bit integer
 representing days since epoch (January 1, 1970).
 Dates can be represented in queries and inserts as a
 string, such as 2015-05-03 (yyyy-mm-dd)

 decimal integers, floats Variable-precision decimal

 double integers, floats 64-bit IEEE-754 floating point

 float integers, floats 32-bit IEEE-754 floating point

 frozen User-defined
 types,collections,

 tuples

 A frozen value serializes multiple components into a
 single value. Non-frozen types allow updates to
 individual fields. Cassandra treats the value of a
 frozen type as a blob. The entire value must be
 overwritten.

 inet strings IP address string in IPv4 or IPv6 format, used by the
 python-cql driver and CQL native protocols

https://docs.datastax.com/en/cql-oss/3.3/cql/cql_reference/counter_type.html

 int integers 32-bit signed integer

 list n/a A collection of one or more ordered elements:
 [literal, literal, literal].

 map n/a A JSON-style array of literals: { literal : literal,
 literal : literal ... }

 set n/a A collection of one or more elements: { literal,
 literal, literal }

 smallint integers 2 byte integer

 text strings UTF-8 encoded string

 time strings Value is encoded as a 64-bit signed integer
 representing the number of nanoseconds since
 midnight. Values can be represented as strings, such
 as 13:30:54.234.

 timesta
 mp

 integers, strings Date and time with millisecond precision, encoded
 as 8 bytes since epoch. Can be represented as a
 string, such as 2015-05-03 13:30:54.234.

 timeuuid uuids Version 1 UUID only

 tinyint integers 1 byte integer

 tuple n/a A group of 2-3 fields.

 uuid uuids A UUID in standard UUID format

 varchar strings UTF-8 encoded string

 varint integers Arbitrary-precision integer

 Comparison of Cassandra and MongoDB

 Sl.No Cassandra MongoDB

 1. Cassandra is high performance
 distributed database system.

 MongoDB is cross-platform
 document-oriented
 database system.

 2. Cassandra is written in Java MongoDB is written in C++.

 3. Cassandra stores data in tabular
 form
 like SQL format.

 MongoDB stores data in JSON
 format.

http://en.wikipedia.org/wiki/Universally_unique_identifier

 4. Cassandra is licensed by Apache. MongoDB is licensed by AGPL and
 drivers by Apache.

 5. Cassandra is mainly designed to
 handle large amounts of data across
 many commodity servers.

 MongoDB is designed to deal with
 JSON-like documents and access
 applications easier and faster.

 6. Cassandra provides high availability
 with no single point of failure.

 MongoDB is easy to administer in the
 case of failure.

