UNIT III NOSQL DATABASES 9

NoSQL — CAP Theorem — Sharding - Document based — MongoDB Operation:
Insert, Update, Delete, Query, Indexing, Application, Replication, Sharding—Cassandra:
Data Model, Key Space, Table Operations, CRUD Operations, CQL Types — HIVE: Data
types, Database Operations, Partitioning — HiveQL — OrientDB Graph database —
OrientDB Features

Cassandra:

Apache Cassandra is a highly scalable, high performance, distributed NoSQL
database. Cassandra is designed to handle huge amounts of data across many commodity
servers, providing high availability without a single point of failure.

Cassandra is a NoSQL database

NoSQL database is Non-relational database. It is also called Not Only SQL. It is a
database that provides a mechanism to store and retrieve data other than the tabular
relations used in relational databases. These databases are schema-free, support easy
replication, have simple API, eventually consistent, and can handle huge amounts of data.
Important Points of Cassandra
e (assandra is a column-oriented database.

e (Cassandra is scalable, consistent, and fault-tolerant.

e (assandra is created at Facebook. It is totally different from relational database
management systems.

e (assandra is being used by some of the biggest companies like Facebook, Twitter,
Cisco, Rackspace, ebay, Twitter, Netflix, and more.

Data Model

Data model in Cassandra is totally different from normally we see in RDBMS.
Cluster

Cassandra and other dynamo-based databases distribute data throughout the
cluster by using consistent hashing. The rowkey (analogous to a primary key in an
RDBMS) is hashed. Each node is allocated a range of hash values, and the node that has
the specific range for a hashed key value takes responsibility for the initial placement of
that data.

In the default Cassandra partitioning scheme, the hash values range from -263 to
263-1. Therefore, if there were four nodes in the cluster and we wanted to assign equal
numbers of hashes to each node, then the hash ranges for each would be approximately as
follows:

Node Low Hash High Hash

Node A - 25 -2%/2
Node B -2%3/2 0
Node C 0 28/2
Node D 2%y/2 2%

We usually visualize the cluster as a ring: the circumference of the ring represents
all the possible hash values, and the location of the node on the ring represents its area of
responsibility. Figure illustrates simple consistent hashing: the value for a rowkey is
hashed, which determines its position on “the ring.” Nodes in the cluster take
responsibility for ranges of values within the ring, and therefore take ownership of
specific rowkey values.

Rowkey="johnny"
Hash= -6.7e10
Node=A

Hash -2% to -2%/2

Hash-2%72 to0

Hash 0 to 212

The four-node cluster in Figure 8-10 is well balanced because every node is
responsible for hash ranges of similar magnitude. But we risk unbalancing the cluster as
we add nodes. If we double the number of nodes in the cluster, then we can assign the
new nodes at points on the ring between existing nodes and the cluster will remain
balanced. However, doubling the cluster is usually impractical: it’s more economical to
grow the cluster incrementally.

Early versions of Cassandra had two options when adding a new node. We could
either remap all the hash ranges, or we could map the new node within an existing range.
In the first option we obtain a balanced cluster, but only after an expensive rebalancing
process. In the second option the cluster becomes unbalanced; since each node is

responsible for the region of the ring between itself and its predecessor, adding a new
node without changing the ranges of other nodes essentially splits a region in half. Figure
shows how adding a node to the cluster can unbalance the distribution of hash key ranges.

AFb e T
ATTer ac

Hode D Node &
5% 25% 5%

New Nod
1%

Node C Node B
MNode B

25% 25%
13%
Insertion point

for new node

Order-Preserving Partitioning

The Cassandra partitioner determines how keys are distributed across nodes. The
default partitioner uses consistent hashing, as described in the previous section.
Cassandra also supports order-preserving partitioners that distribute data across the nodes
of the cluster as ranges of actual (e.g., not hashed) rowkeys. This has the advantage of
isolating requests for specific row ranges to specific machines, but it can lead to an
unbalanced cluster and may create hotspots, especially if the key value is incrementing.
For instance, if the key value is a timestamp and the order-preserving partitioner is
implemented, then all new rows will tend to be created on a single node of the cluster. In
early versions of Cassandra, the order-preserving petitioner might be warranted to
optimize range queries that could not be satisfied in any other way; however, following
the introduction of secondary indexes, the order-preserving petitioner is maintained
primarily for backward compatibility, and Cassandra documentation recommends against
its use in new applications.

Key Space

Keyspace is the outermost container for data in Cassandra. A keyspace is an object
that is used to hold column families, user defined types. A keyspace is like a RDBMS
database which contains column families, indexes, user defined types, data center
awareness, strategy used in keyspace, replication factor, etc.

Following are the basic attributes of Keyspace in Cassandra:
e Replication factor: It specifies the number of machines in the cluster that will

receive copies of the same data.

e Replica placement Strategy: It is a strategy which specifies how to place replicas in
the ring.
e There are three types of strategies such as:
1) Simple strategy (rack-aware strategy)
2) old network topology strategy (rack-aware strategy)
3) network topology strategy (datacenter-shared strategy)
In Cassandra, "Create Keyspace" command is used to create keyspace.
Cassandra Create Keyspace
Cassandra Query Language (CQL) facilitates developers to communicate with
Cassandra. The syntax of Cassandra query language is very similar to SQL. In Cassandra,
"Create Keyspace" command is used to create keyspace.
Syntax:
CREATE KEYSPACE <identifier> WITH <properties>

Example:

Let's take an example to create a keyspace named "StudentDB".

CREATE KEYSPACE StudentDB WITH replication = {'class':'SimpleStrategy',

'replication_factor' : 3};

Different components of Cassandra Keyspace

Strategy: There are two types of strategy declaration in Cassandra syntax:

e Simple Strategy: Simple strategy is used in the case of one data center. In this
strategy, the first replica is placed on the selected node and the remaining nodes are
placed in clockwise direction in the ring without considering rack or node location.

e Network Topology Strategy: This strategy is used in the case of more than one data
center. In this strategy, you have to provide a replication factor for each data center
separately.

Using a Keyspace

To use the created keyspace, you have to use the USE command.
Syntax:

USE <identifier>
Cassandra Alter Keyspace

The "ALTER keyspace" command is used to alter the replication factor, strategy
name and durable writes properties in created keyspace in Cassandra.

Syntax:

ALTER KEYSPACE <identifier> WITH <properties>

Cassandra Drop Keyspace

In Cassandra, "DROP Keyspace" command is used to drop keyspaces with all the
data, column families, user defined types and indexes from Cassandra.
Syntax:

DROP keyspace KeyspaceName ;

Table Operations, - CRUD Operations
Cassandra Create Table
In Cassandra, CREATE TABLE command is used to create a table. Here, column
family is used to store data just like table in RDBMS. So, you can say that CREATE
TABLE command is used to create a column family in Cassandra.
Syntax:
CREATE TABLE tablename(
columnl name datatype PRIMARYKEY,
column2 name data type,
column3 name data type.
)
There are two types of primary keys:
1. Single primary key: Use the following syntax for single primary key.
Primary key (ColumnName)
2. Compound primary key: Use the following syntax for a single primary key.
Primary key(ColumnNamel,ColumnName?2...)
Example:
Let's take an example to demonstrate the CREATE TABLE command.
Here, we are using the already created Keyspace "StudentDB".
CREATE TABLE student(
student id int PRIMARY KEY,
student name text,
student_city text,
student fees varint,
student phone varint
);
SELECT * FROM student;
Cassandra Alter Table
ALTER TABLE command is used to alter the table after creating it. You can use
the ALTER command to perform two types of operations:
e Adda column
e Drop a column

Syntax:
ALTER (TABLE | COLUMNFAMILY) <tablename> <instruction>
Adding a Column

You can add a column in the table by using the ALTER command. While adding
column, you have to aware that the column name is not conflicting with the existing
column names and that the table is not defined with compact storage option.

Syntax:
ALTER TABLE table name ADD new column datatype;
After using the following command:

ALTER TABLE student ADD student email text;

A new column is added. You can check it by using the SELECT command.
Dropping a Column

You can also drop an existing column from a table by using ALTER command.
You should check that the table is not defined with compact storage option before
dropping a column from a table.

Syntax:

ALTER table name DROP column name;

Example:
After using the following command:
ALTER TABLE student DROP student email;
Now you can see that a column named "student email" is dropped now. If you want to
drop the multiple columns, separate the column name by ",".
Cassandra DROP table
DROP TABLE command is used to drop a table.
Syntax:

DROP TABLE <tablename>
Example:

After using the following command:

DROP TABLE student;

The table named "student" is dropped now. You can use DESCRIBE command to
verify if the table is deleted or not. Here the student table has been deleted; you will not
find it in the column families list.

Cassandra Truncate Table

TRUNCATE command is used to truncate a table. If you truncate a table, all the
rows of the table are deleted permanently.
Syntax:

TRUNCATE <tablename>

Cassandra Batch
In Cassandra BATCH is used to execute multiple modification statements (insert,
update, delete) simultaneously. It is very useful when you have to update some column as
well as delete some of the existing.
Syntax:
BEGIN BATCH
<insert-stmt>/ <update-stmt>/ <delete-stmt>
APPLY BATCH
Use of WHERE Clause
WHERE clause is used with SELECT command to specify the exact location from
where we have to fetch data.
Syntax:
SELECT FROM <table name> WHERE <condition>;
SELECT * FROM student WHERE student 1d=2;
Cassandra Update Data
UPDATE command is used to update data in a Cassandra table. If you see no
result after updating the data, it means data is successfully updated otherwise an error
will be returned. While updating data in Cassandra table, the following keywords are
commonly used:
e Where: The WHERE clause is used to select the row that you want to update.
e Set: The SET clause is used to set the value.
e Must: It is used to include all the columns composing the primary key.
Syntax:
UPDATE <tablename>
SET <column name> = <new value>
<column name> = <value>....
WHERE <condition>
Cassandra DELETE Data
DELETE command is used to delete data from Cassandra table. You can delete the
complete table or a selected row by using this command.
Syntax:
DELETE FROM <identifier> WHERE <condition>;
Delete an entire row
To delete the entire row of the student id "3", use the following command:
DELETE FROM student WHERE student id=3;
Delete a specific column name
Example:

Delete the student fees where student id is 4.

DELETE student_fees FROM student WHERE student_1d=4;
HAVING Clause in SQL

The HAVING clause places the condition in the groups defined by the GROUP
BY clause in the SELECT statement. This SQL clause is implemented after the 'GROUP
BY' clause in the 'SELECT' statement. This clause is used in SQL because we cannot use
the WHERE clause with the SQL aggregate functions. Both WHERE and HAVING
clauses are used for filtering the records in SQL queries.
Syntax of HAVING clause in SQL

SELECT column Namel, column Name2, ... , column NameN
aggregate function name(column Name) GROUP BY
Example:

SELECT SUM(Emp_Salary), Emp City FROM Employee GROUP BY
Emp City;
the following query with the HAVING clause in SQL.:

SELECT SUM(Emp_Salary), Emp City FROM Employee GROUP BY
Emp_ City HAVING SUM(Emp_Salary)>12000;
MIN Function with HAVING Clause:

If you want to show each department and the minimum salary in each department,
you have to write the following query:
SELECT MIN(Emp_Salary), Emp Dept FROM Employee GROUP BY Emp_Dept;
MAX Function with HAVING Clause:
SELECT MAX(Emp_Salary), Emp Dept FROM Employee GROUP BY Emp_Dept;
AVERAGE CLAUSE:
SELECT AVG(Emp_ Salary), Emp Dept FROM Employee Dept GROUP BY
Emp_ Dept;

SQL ORDER BY Clause

e Whenever we want to sort the records based on the columns stored in the tables of the
SQL database, then we consider using the ORDER BY clause in SQL.

e The ORDER BY clause in SQL will help us to sort the records based on the specific
column of a table. This means that all the values stored in the column on which we are
applying the ORDER BY clause will be sorted, and the corresponding column values
will be displayed in the sequence in which we have obtained the values in the earlier
step.

Syntax to sort the records in ascending order:
SELECT ColumnNamel,...,ColumnNameN FROM TableName ORDER BY
ColumnName ASC;
Syntax to sort the records in descending order:
SELECT ColumnNamel,...,ColumnNameN FROM TableName ORDER BY
ColumnNameDESC;
Syntax to sort the records in ascending order without using ASC keyword:
SELECT ColumnNamel,...,ColumnNameN FROM TableName ORDER BY
ColumnName;

CQL Types
CQL defines built-in data types for columns. The counter type is unique.
CQL Constants Description
Type supported
ascil strings US-ASCII character string
bigint integers 64-bit signed long
blob blobs Arbitrary bytes (no validation), expressed as
hexadecimal
boolean booleans true or false
counter integers Distributed counter value (64-bit long)
date strings Value is a date with no corresponding time value;

Cassandra encodes date as a 32-bit integer
representing days since epoch (January 1, 1970).
Dates can be represented in queries and inserts as a
string, such as 2015-05-03 (yyyy-mm-dd)

decimal integers, floats Variable-precision decimal
double integers, floats 64-bit IEEE-754 floating point
float integers, floats 32-bit IEEE-754 floating point
frozen User-defined A frozen value serializes multiple components into a
types,collections, single value. Non-frozen types allow updates to
tuples individual fields. Cassandra treats the value of a
frozen type as a blob. The entire value must be
overwritten.
inet strings IP address string in IPv4 or IPv6 format, used by the

python-cql driver and CQL native protocols

https://docs.datastax.com/en/cql-oss/3.3/cql/cql_reference/counter_type.html

int integers 32-bit signed integer
list n/a A collection of one or more ordered elements:
[literal, literal, literal].
map n/a A JSON-style array of literals: { literal : literal,
literal : literal ... }
set n/a A collection of one or more elements: { literal,
literal, literal }
smallint integers 2 byte integer
text strings UTF-8 encoded string
time strings Value is encoded as a 64-bit signed integer
representing the number of nanoseconds since
midnight. Values can be represented as strings, such
as 13:30:54.234.
timesta integers, strings Date and time with millisecond precision, encoded
mp as 8 bytes since epoch. Can be represented as a
string, such as 2015-05-03 13:30:54.234.
timeuuid uuids Version 1 UUID only
tinyint integers 1 byte integer
tuple n/a A group of 2-3 fields.
uuid uuids A UUID in standard UUID format
varchar strings UTF-8 encoded string
varint integers Arbitrary-precision integer

Comparison of Cassandra and MongoDB

like SQL format.

SL.No Cassandra MongoDB
1. Cassandra is high performance MongoDB 1s cross-platform
distributed database system. document-oriented
database system.
2. Cassandra is written in Java MongoDB is written in C++.
3. Cassandra stores data in tabular | MongoDB stores data in JSON
form format.

http://en.wikipedia.org/wiki/Universally_unique_identifier

Cassandra is licensed by Apache. MongoDB is licensed by AGPL and

drivers by Apache.
Cassandra is mainly designed to MongoDB is designed to deal with
handle large amounts of data across | JSON-like documents and access
many commodity servers. applications easier and faster.

Cassandra provides high availability | MongoDB is easy to administer in the
with no single point of failure. case of failure.

