ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY

 Approved by AICTE \& Affliated to anna university Accredited with A $^{+}$grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERINGNAME OF THE SUBJECT: ENGINEERING MECHANICS SUBJECT CODE : ME3351

REGULATION 2021

UNIT I: BASIC \& STATICS OF PARTICLES

Statics of Particles in Two Dimensions- Resultant ForceResultant

Force:

If a number of forces acting on a particle simultaneously are replaced by a single force which could produce the same effort as produced by the given forces, that single force is called resultant force.

Lami's Theorem:

It state that "if three coplanar forces acting at a point be in equilibrium, than each force is propositional to the sin of the angle between the other two forces.

Parallelogram Law of forces:

It states that "if the two forces acting simultaneously at a point represented in magnitude and direction by the two adjacent sides of the parallelogram, then the resultant of these two forces is represented in magnitude and direction by the diagonal of the parallelogram originating from that point.

Let pand Q are two concurrent force acting on a point O at an angle of θ.
The forces P and Q are graphically represented by the lines OA and OB respectively.

The parallelogram $\theta \mathrm{ACB}$ is completed by drawing the lines BC and AC parallel to OA and OB respectively.

In parallelogram OACB, the diagonal OC represents the resultant force of P and q. by II Law of forces.

In order to prove the, parallelogram law of forces, extend the lines of action of force P , till its meet the perpendicular drawn from point C .

Let the point of intersection of these two lines be D . from the geometry of the parallelogram.
$\mathrm{OB}=\mathrm{AC}$
$\mathrm{OA}=\mathrm{BC}$

In triangle ACD

$\cos \theta=\frac{A D}{Q} \quad \sin \theta=\frac{C D}{Q}$
$\mathrm{AD}=\mathrm{Q} \cos \theta$

$$
\begin{align*}
\text { Also } & =\mathrm{AD}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2} \tag{1}\\
& =\mathrm{AD}^{2}+\mathrm{CD}^{2}=\mathrm{Q}^{2}
\end{align*}
$$

$\mathrm{CD}=\mathrm{Q} \sin \theta$

In triangle OCD

$$
\begin{aligned}
\mathrm{OC}^{2} & =\mathrm{OD}^{2}+\mathrm{CD}^{2} \\
& =(\mathrm{OA}+\mathrm{AD})^{2}+\mathrm{CD}^{2} \\
& =\mathrm{OA}^{2}+\mathrm{AD}^{2}+2 \times \mathrm{OA} \times \mathrm{AD}+\mathrm{CD}^{2} \\
& =\mathrm{OA}^{2}+\left(\mathrm{AD}^{2}+\mathrm{CD}^{2}\right)+2 \mathrm{OA} \mathrm{AD} \\
& =\mathrm{OA}^{2}+\mathrm{AC}^{2}+2 \mathrm{OA} \mathrm{AD} \\
\mathrm{R}^{2} & =\mathrm{P}^{2}+\mathrm{Q}^{2}+2 \times \mathrm{PQ} \cos \theta \\
\mathrm{R} & =\sqrt{P^{2}}+Q^{2}+2 \times P Q \cos \theta
\end{aligned}
$$

Inclination of the resultant force with the force P

Let the angle of inclinator of R with the line of action of the force P be a In triangle OCD

$$
\begin{aligned}
& \quad \tan \mathrm{a}=\frac{C D}{O D}=\frac{D}{O A+A D}=\frac{Q \sin \theta}{P+Q \cos \theta} \\
& \therefore \tan \mathrm{a}=\frac{Q \sin \theta}{P+Q \cos \theta}
\end{aligned}
$$

Important results:

O

$\mathrm{OA}+\quad \mathrm{AD}$

1. If $\theta=0^{\circ}$ then the resultant forces pand Q will be like collinear, then,
$R=P+Q$

2. If $\theta=90^{\circ}$, the forces P and Q are at right angles then $\mathrm{R}=\sqrt{P^{2}+Q^{2}}$
3. If $\theta=180^{\circ}$, then the forces P and Q will be unlike collinear forces, then $\mathrm{R}=\mathrm{P}-\mathrm{Q}$.

Triangle law of Forces:

If two forces acting at a point are represented by two sides of a triangle taken in order, then their resultant force is represented by the third side taken in opposite order.

Polygon Law of forces:

Polygon Law of forces states that, 'if a number of coplanar concurrent forces are represented in magnitude and direction by the sides of a polygon taken in an order then their resultant force is represented by the closing side of the polygon taken in the opposite order.

Sine Law:
The law of sines can be used when two angles and a side are known a technique known as triangulation.

$$
=\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}
$$

Cosine Law:

c

It two side and the angle between the sides are known,
Then the third is given by

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos \alpha \\
& b^{2}=c^{2}+a^{2}-2 c a \cos \beta \\
& c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
\end{aligned}
$$

c

Resolution of a force in to its horizontal and vertical part.

Method I

$$
\begin{aligned}
& \sin \theta=\frac{F}{F}=>F V=F \sin \theta \\
& \cos \theta=\frac{F H}{F}=>F H=F \cos \theta
\end{aligned}
$$

Method II

$$
\sin =\frac{F H}{F}=>F H=F \sin \theta
$$

$$
\cos \theta=\frac{F v}{F}=>F v=F \cos \theta
$$

Principle of transmissibility of Forces:

If a force act at any point of on a rigid body it may also be considered to act at any other point on its line of action.

Resultant force of two concurrent forces:

1. Resultant force of two concurrent force
2. Resultant force of more than two concurrent force

Problem based on parallelogram \& Resultant forces:

1. Find the resultant force of the collinear forces shown in fig.

Soln:

$$
\text { Resultant force } R=8+10+12=30 \mathrm{~N}
$$

2. Find the resultant force of the collinear forces, shown in fig

Soln:

Magnitude of resultant force

$$
\begin{aligned}
& =2-3+6-11 \\
\mathrm{R} & =-6 \mathrm{~N}
\end{aligned}
$$

3. Find the resultant force an 800 N force acting towards eastern direction and a 500 n force acting towards north eastern direction. by 1. Parallelogram Law
2. Triangle Law

Also find the direction

Given

$$
\mathrm{P}=800 \mathrm{~N} \quad \mathrm{Q}=500 \mathrm{~N} \quad \theta=45^{\circ}
$$

To find
Resultant force \& direction

Soln

1. Parallelogram Law

Resultant Force $\mathrm{R}=\sqrt{P^{2}}+Q^{2}+2 P Q \cos \theta$

$$
\begin{aligned}
& \mathrm{R}=\sqrt{800^{2}}+500^{2}+2 \times 800 \times 500 \times \cos 45 \\
& \mathrm{R}=1206.52 \mathrm{~N}
\end{aligned}
$$

Direction of magnitude

$$
\begin{aligned}
& \mathrm{Q}=\tan ^{-1\left[\frac{Q \sin \theta}{P+Q \cos \theta}\right]} \\
& \left.\mathrm{Q}=\tan ^{-1\left[\frac{500 \sin 45}{800+500} \cos 45\right.}\right] \\
& \mathrm{Q}=17^{\circ} 04^{\prime}
\end{aligned}
$$

Summing of components:

$$
\begin{aligned}
& \mathrm{R} \quad=\sqrt{F H^{2}+\sum F V^{2}} \\
& \sum \mathrm{FH}=800+500 \sin 45=1153.55 \mathrm{~N} \\
& \sum \mathrm{FH}=500 \sin 45=353.55 \mathrm{~N} \\
& \mathrm{R}=\sqrt{1153.55^{2}+353.55^{2}} \\
& \mathrm{R}=1206.52 \mathrm{~N} \\
& \alpha=\tan ^{-1} \frac{\left[\sum F V\right]}{\sum^{F F H}} \\
& =\tan ^{-1} \frac{[1153.55]}{353.55} \\
& \alpha=17^{\circ} 04^{\prime}
\end{aligned}
$$

4. Two forces 60 N and 65 N act on a screw at an angle of 25° and 85° from the base. Determine the magnitude and direction of their resultant.

Given:

$P_{1}=60 \mathrm{~N} 1,1=25^{\circ}$
$\mathrm{P}_{2}=65 \mathrm{~N}, \theta_{2}=85^{\circ}$

To find:

Magnitude \& direction of their resultant

Soln:

1. Magnitude of resultant force

$$
\mathrm{R}=\sqrt{\sum F H^{2}+\sum F V^{2}}
$$

$$
\begin{aligned}
\sum F H= & 60 \cos \theta_{1}+65 \cos \theta_{2} \\
& =60 \cos 25+65 \cos 85
\end{aligned}
$$

$$
\sum F H=60 \mathrm{~N}
$$

$$
\sum F V=60 \sin \theta_{1}+65 \sin \theta_{2}=60 \sin 25+65 \sin 85
$$

$$
\sum F V=90 \mathrm{~N}
$$

$$
\begin{aligned}
R & =\sqrt{60^{2}+90^{2}} \\
R & =108.17 \mathrm{~N}
\end{aligned}
$$

5. Two wires are attached to a bolt in a foundation as shown in fig. below. Determine the pull exerted by the bolt on the foundation.

Soln:

Resultant force $\mathrm{R}=\sqrt{\sum F H^{2}+\sum F V^{2}}$

$$
\begin{aligned}
\sum F H & =3600 \cos 25-6650 \cos 15 \\
\sum F H & =-3160 \mathrm{~N} \\
\sum F V & =3600 \sin 25+6650 \sin 15 \\
\Sigma F V & =3242 \mathrm{~N} \\
\mathrm{R} & =\sqrt{-3160^{2}+3242^{2}} \\
\mathrm{R} & =4527 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\tan ^{-1} \frac{\sum \frac{\Sigma F V}{\Sigma F H}}{\overline{F^{2}}} \\
& \alpha=\tan ^{-1}\left[\frac{\Sigma 3242}{\Sigma 3160}\right] \\
& \alpha=45^{\circ} 73^{\prime}
\end{aligned}
$$

\Rightarrow Resultant force of more than Two concurrent Forces:

Resolution of Forces:

Splitting up a force into components along the fixed reference axis is called Resolution of a force.

Fh
$\mathrm{F}_{\mathrm{h}}=$ horizontal component $=+\mathrm{F} \cos \theta$
$\mathrm{F}_{\mathrm{v}}=$ vertical component $=+\mathrm{F} \sin \theta$
Sign conversion:
Horizontalcomponent -

Vertical component

$$
\mathrm{R}=\sqrt{\sum F H^{2}+\sum F V^{2}}
$$

$$
\alpha=\tan ^{-1}\left[\frac{\sum^{\Sigma V V}}{\Sigma F H}\right.
$$

1. Three coplanar concurrent forces are acting at a point as shown in fig. Determine the resultant in magnitude of direction.

Soln:

Force \& magnitude	θ	Fcos θ	$F \sin \theta$
$\mathrm{~F}_{1}=200$	45°	$200 \cos 45^{\circ}=141.42$	$200 \sin 45^{\circ}=141.42 \mathrm{~N}$
$\mathrm{~F}_{2}=400$	150°	$400 \cos 150^{\circ}=-326.41$	$400 \sin 150^{\circ}=200$
$\mathrm{~F}_{3}=600$	300°	$600 \cos 300^{\circ}=300 \mathrm{~N}$	$600 \cos 300^{\circ}=-519.61$
		$\sum F H=95.01 \mathrm{~N}$	$\sum F V=-178.19 \mathrm{~N}$

$\mathrm{R}=\sqrt{\sum F H^{2}+\sum F V^{2}}=\sqrt{95.01^{2}+-178.19^{2}}$
$\mathrm{R}=201.95 \mathrm{~N}$
2. The four coplanar forces acting at a point a as shown in fig. Determine the resultant in magnitude and direction.

Soln:2 nd method

Note: ${ }_{1}=10^{\circ} \theta_{2}=90-24=66^{\circ}$

$$
\theta_{3}=3^{\circ} \theta_{4}=90-9=81^{\circ}
$$

$\Sigma F H=-248.36$
$\sum F V=-77.82$

$$
\mathrm{R}=260.26 \mathrm{~N} \quad \theta=17.39^{\circ}
$$

3. A system of four forces acting on a body is shown in fig below. Determine the resultant force and direction.

Soln:

Resultant force $\mathrm{R}=\sqrt{\sum F H^{2}+\sum F V^{2}}$
$\sum F H=200 \cos 26^{\circ} 33^{\prime}-120 \cos 56^{\circ} 18^{\prime}-50 \cos 60+100 \cos 50$
$\sum F H=178.90-66.58-25+64.27$
$\sum F H=151.59$
$\sum F V=200 \sin 26^{\circ} 33^{\prime}+120 \sin 56^{\circ} 18^{\prime}-50 \sin 60-100 \sin 50$
$\Sigma F V=89.39+99.83-43.30-76.60$
$\Sigma F V=69.32 \mathrm{~N}$
$R=\sqrt{(151.59)^{2}+(69.32)^{2}}$
$\mathrm{R}=166.68 \mathrm{~N}$

Direction of magnitude

$$
\begin{aligned}
& \alpha=\tan ^{-1\left[\sum_{\Sigma^{F F H}}\right.}=\tan ^{-1\left[\frac{69.32}{151.59}\right]} \\
& \alpha=24^{\circ} 34^{\prime}
\end{aligned}
$$

4. The truck shown is to be toward using two ropes. Determine the magnitude of forces $F_{A} \& F_{B}$ acting on each rope in order to develop a resultant force of 950 N directed along the positive X axis.

Resultant force $\mathrm{R}=950 \mathrm{~N}$ in positive \times direction
\therefore Hence $\sum F H=950$

$$
\sum F H
$$

$=$
Resolving forces horizontally
$\sum F H=\mathrm{FA} \cos 20^{\circ}+\mathrm{FB} \cos 50^{\circ}$

$$
\begin{equation*}
F A \cos 20+F B \cos 50=950 \tag{1}
\end{equation*}
$$

Resolving forces vertically

$$
\Sigma F V=F A \sin 20-F B \sin 50=0
$$

$$
\begin{equation*}
F A \sin 20-F B \sin 50=0 \tag{2}
\end{equation*}
$$

Solving eq(1) \& (2)

$$
\begin{gather*}
F A \cos 20+F B \cos 50=950 \\
F A \sin 20-F B \sin 50=0 \\
0.939 F A+0.642 F B=950-\cdots \tag{1}\\
0.342 F A+0.766 F B=0 \tag{2}\\
0.939 F A+0.642 F B=950 \\
(2) \times 2.75 \quad 0.342 F A \pm 0.766 F B=0
\end{gather*}
$$

$$
\begin{aligned}
& 2.748 \mathrm{FB}=950 \\
& \mathrm{FB}=\frac{950}{2.748} \\
& \mathrm{FB}=345.64 \mathrm{~N}
\end{aligned}
$$

FB value sub in eqn(1)

$$
\begin{aligned}
& 0.94 \times \mathrm{FA}+0.642 \times 345.64=950 \\
& 0.94 \mathrm{FA}=950-221.9=728 \\
& \mathrm{FA}=\frac{728.09}{0.94} \\
& \mathrm{FA}=774.57 \mathrm{~N}
\end{aligned}
$$

5. Five forces are acting on a particle. The magnitude of the forces are 300 $\mathrm{N}, 600 \mathrm{~N}, 700 \mathrm{~N}, 900 \mathrm{n}$ and P and their respective angles with the horizontal are $0^{\circ}, 60^{\circ}, 135^{\circ}, 210^{\circ}, 270^{\circ}$. If the vertical component of all the force is 1000 N, Find the value of P. Also calculate the magnitude and the direction of the resultant, assuming that the first force acts towards the point, while all the remaining forces act away from the point.

Given:

$\theta_{1}=0^{\circ} \theta_{2}=60^{\circ} \quad \theta_{3}=180-135=45^{\circ}$
$\theta_{4}=180+[90-60]=210^{\circ}=30^{\circ}$
$\theta_{5}=270=90^{\circ}$
$\mathrm{F}_{1}=300, \quad \mathrm{~F}_{2}=600 \quad \mathrm{~F}_{3}=700 \quad \mathrm{~F}_{4}=900 \quad \mathrm{~F}_{5}=\mathrm{P}$
$\sum F V=-1000 \mathrm{~N}$

Soln

Resultant force $\mathrm{R}=\sqrt{\left(\sum F H\right)^{2}+\left(\sum \mathrm{FV}\right)^{2}}$

$$
\sum \mathrm{FV}=-1000 \mathrm{~N}
$$

To find the value of ' P '

Algebraic sum of vertical components

$$
\begin{aligned}
& \sum \mathrm{Fv}=600 \sin 60+700 \sin 45-900 \sin 30-\mathrm{P} \\
& -1000=519.61+494.97-450-\mathrm{P} \\
& -1000=-519.61-494.97+450=-\mathrm{P} \\
& -1564.58=-\mathrm{P} \\
& \mathrm{P}=1564.58 \mathrm{~N} \\
& \sum \mathrm{FH}=-300+600 \cos 60-700 \cos 45-900 \cos 30 \\
& \sum \mathrm{FH}=-300+300-494.97-779.42 \\
& \sum \mathrm{FH}=-1274.39 \mathrm{~N}
\end{aligned}
$$

Resultant force $\mathrm{R}=\sqrt{(-1274.39)^{2}+(-1000)^{2}}$

$$
\mathrm{R}=1619.89 \mathrm{~N}
$$

Direction $\alpha=\tan ^{-1\left[\frac{\Sigma F V}{\Sigma F H}\right]}=\tan ^{-1}\left[\frac{1000}{1274}\right]$

$$
\alpha=38^{\circ} 7^{\prime}
$$

6. Determine the magnitude and angle of f so that particle P shown in Fig

Soln:

$\sum \mathrm{FH}=\mathrm{F} \cos \theta-4.5-7.5 \cos 60+2.25 \cos 60=0$

$$
\begin{equation*}
\sum \mathrm{FV}=\mathrm{F} \sin \theta-7.5 \sin 60-2.25 \sin 60=0 \tag{1}
\end{equation*}
$$

$\mathrm{F} \sin \theta-6.49-1.94=0$

Eqn (1) Rearrange

$\mathrm{F} \cos \theta-7.125=0$
$\mathrm{F} \cos \theta=7.125$
Eqn(2) Rearrange
$\mathrm{F} \sin \theta-8.43=0$
$\mathrm{F} \sin \theta=8.43$
(3) $_{(4)}^{\text {(4) }} \underset{F \sin \theta}{=}{ }^{8.43} \overline{7.125}$

$$
\operatorname{Tan} \theta=1.183
$$

$$
\theta=\tan ^{-1}[1.183]
$$

$$
\theta=49^{\circ} 47^{\prime}
$$

Substitute $\theta=49^{\circ} 47^{\prime}$ in eqn(3)
$\mathrm{F} \cos \theta=7.125 \Rightarrow \mathrm{~F} \cos 49^{\circ} 47^{\prime}=7.125$

$$
\mathrm{F}=\frac{7.125}{\cos 49^{\circ} 47}
$$

$$
\mathrm{F}=11.03 \mathrm{~N}
$$

