
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

SHORTEST PATH ALGORITHMS

 An algorithm to find the shortest distance path between the source and destination vertices is called the

shortest path algorithm.

Types of shortest path problem

i. Single source shortest path

Given an input graph G = (V,E) and a distinguished vertex S, find the shortest path from S to every other vertex in G.

Example: Dijkstra‟s algorithm (weighted graph and unweighted graph).

ii. All pairs shortest path problem

Given an input graph G = (V,E). Find the shortest path from each vertex to all vertices in a graph.

Dijkstra‟s algorithm

Weighted Graph

The general method to solve the single source shortest path problem is known as Dijkstra‟s algorithm. It applied to

weighted graph.

Procedure

 It uses greedy technique.

 It proceeds in stages.

 It selects a vertex v, which has the smallest dv among all the unknown vertices and declares the shortest

path from s to v is known.

 The remainder consists of updating the value of dw.

 We should set dw = dv + Cv, w, if the new value for dw would an improvement.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Example: Find the shortest path for the following graph.

Tracing Dijkstra’s algorithm starting at vertex B:

 The resulting vertex-weighted graph is:

Algorithm Analysis

Time complexity of this algorithm O(|E| + |V|2) = O(|V|2)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Table Initialization routine

void InitTable(Vertex Start, Graph G, Table T)

{

int i;

ReadGraph(G,T);

for (i=0; i<NumVertex; i++)

{

T[i].known = False;

T[i]. Dist = Infinity;

T[i]. Path = NotAVertex;

}

T[Start]. Dist = 0;

}

Pseudocode for Dijkstra’s algorithm

void Dijkstra(Table T)

{

Vertex v, w;

for(; ;)

{

v = smallest unknown distance vertex;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

if(v = = NotAVertex) break;

T[v]. kown = True;

for each w adjacent to v

if(!T[w].known)

 if(T[v].Dist + Cvw < T[w]. Dist)

{

/* update w*/ Decrease(T[w]. Dist to T[v].Dist + Cvw);

 T[w]. path = v;

}

 }

 }

