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Magnetic Flux Density:

In snmple matter, the magnetic flux density Brelated to the magnetic field mtensty
B=uH where “called the permeability. In particular when we consider the free space B = “OH

where “ = 47% 107 H/m is the permeability of the free space. Magnetic flux density is measured
in terms of Wb/m 2

The magnetic flux density through a surface is given by:

W= !_éd_s’
WD oo (4.18)

In the case of electrostatic field, we have seen that if the surface is a closed
surface, the net flux passing through the surface is equal to the charge enclosed by
the surface. In case of magnetic field isolated magnetic charge (i. e. pole) does not
exist. Magnetic poles always occur in pair (as N-S). For example, if we desire to
have an isolated magnetic pole by dividing the magnetic bar successively into
two, we end up with pieces each having north (N) and south (S) pole as shown in
Fig. 4.7 (a). This process could be continued until the magnets are of atomic
dimensions; still we will have N-S pair occurring together. This means that the
magnetic poles cannot be isolated.
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Fig. 4.7: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying
conductor

Similarly if we consider the field/flux lines of a current carrying conductor as
shown in Fig. 4.7 (b), we find that these lines are closed lines, that is, if we
consider a closed surface, the number of flux lines that would leave the surface
would be same as the number of flux lines that would enter the surface.

From our discussions above, it is evident that for magnetic field,

which is the Gauss's law for the magnetic field.

By applying divergence theorem, we can write:

(fgd; =J‘v Bdv =0

Hence, VB=0 o (4.20)

which is the Gauss's law for the magnetic field in point form.
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Magnetic Scalar and Vector Potentials:

In studying electric field problems, we introduced the concept of electric potential
that simplified the computation of electric fields for certain types of problems. In
the same manner let us relate the magnetic field intensity to a scalar magnetic
potential and write:

2 (4.22)
Therefore, VXY™, sl (4
But using vector identity, V()= 0we find that ¥ = ™V xis valid only where J = 0. Thus

scalar magnetic potential is defined only in the region where ¥ =0. Moreover, V., in gene
not a single valued function of position.

This point can be illustrated as follows. Let us consider the cross section of a
coaxial line as shown in fig 4.8.
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Fig. 4.8: Cross Section of a Coaxial Line
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We observe that as we make a complete lap around the current carrying conductor , we reach

% again but V,, this time becomes

Vo= = +2m)
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We observe that value of V,, keeps changing as we complete additional laps to pass through the
same point. We introduced V,, analogous to electostatic potential V. But for static electric
fields, V*Z =0and ?E‘df =0
EPH di=1

. whereas for steady magnetic field V*H = Owherever J =0put

even if J = Oalong the path of integration.

We now introduce the vector magnetic potential which can be used in regions
where current density may be zero or nonzero and the same can be easily extended
to time varying cases. The use of vector magnetic potential provides elegant ways
of solving EM field problems.
= —= V.(Vx4)=0
Since ¥.Z="0and we have the vector identity that for any vector 4, ( ‘ )
B=VxA

, We can write

Here, the vector field Ais called the vector magnetic potential. Its SI unit is Wb/m. Thus if can
find 4Aof a given current distribution, Bcan be found from Athrough a curl operation.

We have introduced the vector function 4and related its curl to £ . A vector function is defined
fully in terms of its curl as well as divergence. The choice of V.4is made as follows.

VXVXZ'/NXE.'#} (4.24)

- ~
By using vector identity, VEVERASVNLA TN ooevcsemsensasssmsssammessassenss (4.25)
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Great deal of simplification can be achieved if we choose VA=0,

e - o PO : .
Putting V.A=0, we get V2A= =4 which is vector poisson equation.
In Cartesian coordinates, the above equation can be written in terms of the components as

L e A (4.27a)
L e (4.27b)
A Tl A (4.27¢)

for which the solution is
re—tla,  R=f-r|
dme ) R

- av
V.A=ue—
In case of time varying fields we shall see that d¢ , which is known as Lorentz condition,

V being the electric potential. Here we are dealing with static magnetic field, so ¥-4=0,

By comparison, we can write the solution for Ax as
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Computing similar solutions for other two components of the vector potential, the
vector potential can be written as

This equation enables us to find the vector potential at a given point because of a volume
current density Y. Similarly for line or surface current density we can write

FESPRCHIVEIV: ... .ocmsanmmnmnmmsossssanusss (4.33)

The magnetic flux ¥through a given area S is given by
w=£§.d§

Substituting B=Vx4
W= !VXZd; =<f§i.d?

Vector potential thus have the physical significance that its integral around any
closed path is equal to the magnetic flux passing through that path.
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