4.5 Homomorphism

Let (G, \cdot) and $\left(G^{\prime}, *\right)$ be any two groups.

A mapping $f: G \rightarrow G^{\prime}$ is said to be a homomorphism, if $f(a \cdot b)=f(a) * f(b)$ for any $a, b \in G$ is called a group homomorphism.

Example: (i)

Let $f:(Z,+) \rightarrow(Z,+)$ given by $f(x)=2 x \forall x \in Z$ is a homomorphism.

For, $x, y \in Z, f(x+y)=2(x+y)=2 x+2 y=f(x)+f(y)$

Example: (ii)

Let $f:(R,+) \rightarrow\left(R^{+}, \cdot\right)$ given by $f(x)=e^{x} \forall x \in R$ is a homomorphism.

For, $x \in R, f(x+y)=e^{x+y}=e^{x} \cdot e^{y}=f(x) \cdot f(y)$

Isomorphism:

Let (G, \cdot) and $\left(G^{\prime}, *\right)$ be any two groups. A mapping $f: G \rightarrow G^{\prime}$ is said to be isomorphism if
(i) f is one - one
(ii) f is onto
(iii) f is homomorphism

Types of Homomorphism

(i) If f is one - to - one then f is monomorphism.
(ii) (ii) If f is onto then f is epimorphism.

Theorem: 1

Homomorphism preserves identities.

Proof:

Let $a \in G$

Let f be a homomorphism from $(G, *)$ and $\left(G^{\prime}, *\right)$

Clearly $f(a) \in G^{\prime}$
$\Rightarrow f(a) * e^{\prime}=f(a) \quad\left(e^{\prime}-\right.$ identity in $\left.G^{\prime}\right)$
$=f(a * e) \quad(\mathrm{e}-$ identity in G)
$=f(a) * f(e)(\mathrm{f}-$ homomorphism $)$
$\Rightarrow e^{\prime}=f(e) \quad$ (Left cancellation law)

Hence f preserves identities.

Hence the proof.

Theorem: 2

Homomorphism preserves inverse.

Proof:

Let $a \in G$
Since G is a group, $a^{-1} \in G$

Since G is a group $a * a^{-1}=a^{-1} * a=e$

Consider $a * a^{-1}=e$

$$
\Rightarrow f(a) * f\left(a^{-1}\right)=e^{\prime} \because \overrightarrow{e^{\prime}}=f(e), f \text { is homomorphism }
$$

$\Rightarrow f\left(a^{-1}\right)$ is the inverse of $f(a) \in G^{\prime}$

Hence $[f(a)]^{-1}=f\left(a^{-1}\right)$

Hence f preserves inverse.

ODSFents Hence the proof SpRed
 Hence the proof.

Kernal of Homomorphism

Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. The set of elements of G which are mapped into e^{\prime} (identity in G^{\prime}) is called the kernel of f and it is denoted by $\operatorname{ker}(\mathrm{f})$

$$
\operatorname{ker}(f)=\left\{x \in G / f(x)=e^{\prime}\right\}
$$

Theorem: 1

Kernel of a homomorphism of a group into another group is a normal

subgroup.

Proof:

Let $(G, *)$ and $\left(G^{\prime}, \oplus\right)$ be two groups.
$f:(G, *) \rightarrow\left(G^{\prime}, \oplus\right)$ is a homomorphism.

Define $\operatorname{ker}(f)=\left\{x \in G / f(x)=e^{\prime}\right\}$

Claim: Ker f is a normal subgroup of G

We know that homomorphism preserves identity.
i.e., $f(e)=e^{\prime}$, so $e \in \operatorname{ker} f$
\Rightarrow Ker f is non empty.

oups.

(ii) $a, b \in \operatorname{ker} f \Rightarrow a * b^{-1} \in \operatorname{ker} f$ then $\operatorname{ker} \mathrm{f}$ is a subgroup.
$a \in \operatorname{ker} f \Rightarrow f(a)=e^{\prime}$ by definition of ker f
$b \in \operatorname{ker} f \Rightarrow f(b)=e^{\prime}$ by definition of $\operatorname{ker} \mathrm{f}$

Since homomorphism preserves inverse $\Rightarrow[f(a)]^{-1}=f\left(a^{-1}\right)$

Now $f\left(a * b^{-1}\right)=f(a) \oplus f\left(b^{-1}\right)$

$$
=f(a) \oplus[f(b)]^{-1}
$$

$$
=e^{\prime} \oplus e^{\prime}
$$

$$
=e^{\prime}
$$

$\Rightarrow a * b^{-1} \in \operatorname{kerf}$

Hence kerf is a subgroup of G.
(iii)Let $a \in \operatorname{kerf} \Rightarrow f(a)=e^{\prime}$ by definition of kerf

Homomorphism preserves inverses $\Rightarrow[f(a)]^{-1}=f\left(a^{-1}\right)$

So $f\left(g^{-1} * a * g\right)=f\left(g^{-1}\right) \oplus f(a) \oplus f(g)$

$$
=[f(g)]^{-1} \oplus e^{\prime} \oplus f(g)
$$

$$
=[f(g)]^{-1} \oplus f(g)
$$

$$
=e^{\prime}
$$

Hence by definition, $g^{-1} * a * g \in \operatorname{kerf}$ zan outhenta

Hence kerf is a normal subgroup.

Hence the proof.

Theorem:2

Fundamental theorem of group homomorphism

Every homomorphic image of a group G is isomorphic to some quotient group

 of G.
(OR)

Let $f: G \rightarrow G^{\prime}$ be a onto homomorphism of groups with kernel K, then $\frac{G}{K} \cong G^{\prime}$

Proof:

Let f be the homomorphism $f: G \rightarrow G^{\prime}$

Let G^{\prime} be the homomorphic image of a group G.

Let K be the kernel of this homomorphism.

Clearly K is a normal subgroup of G .

Claim: $\frac{G}{K} \cong G^{\prime}$

Define $\varphi: \frac{G}{K} \rightarrow G^{\prime}$ by $\varphi(K * a)=f(a)$ for all $a \in G$
(i) $\quad \varphi$ is well defined.

We have $K * a=K * b$

$$
\begin{array}{ll}
& \Rightarrow a * b^{-1} \in K \\
\Rightarrow f\left(a * b^{-1}\right)=e^{\prime} & \left(e^{\prime} \text { is identity }\right)
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow f(a) * f\left(b^{-1}\right)=e^{\prime} \\
& \Rightarrow f(a) *[f(b)]^{-1}=e^{\prime} \\
& \Rightarrow f(a) *[f(b)]^{-1} * f(b)=e^{\prime} * f(b) \\
& \Rightarrow f(a)=f(b) \\
& \Rightarrow \varphi(K * a)=\varphi(K * b)
\end{aligned}
$$

Hence φ is well defined.
(ii) To prove φ is one - one.

To prove $\varphi(K * a)=\varphi(K * b) \Rightarrow K * a=K * b$
We know that $\varphi(K * a)=\varphi(K * b)$
$\Rightarrow f(a)=f(b)$
$\Rightarrow f(a) * f\left(b^{-1}\right)=f(b) * f\left(b^{-1}\right)$

$$
=f\left(b * b^{-1}\right)
$$

$$
=f(e)
$$

$$
\Rightarrow f(a) * f\left(b^{-1}\right)=e^{\prime}
$$

$$
\Rightarrow a * b^{-1} \in K
$$

$$
\Rightarrow K * a * b^{-1}=K
$$

$$
\Rightarrow K * a=K * b
$$

Hence φ is one - one.
(iii) φ is onto.

Let $y \in G^{\prime}$

Since f is onto, there exists $a \in G$ such that $f(a)=y$

Hence $\varphi(K * a)=f(a)=y$

Hence φ is onto.
(iv) φ is a homomorphism.

Now $\varphi(K * a * K * b)=\varphi(K * a * b)$

$$
\begin{aligned}
=f(a * b) & \\
& =f(a) * f(b)
\end{aligned}
$$

$$
=\varphi(K * a) *(K * b)
$$

Hence φ is a homomorphism.

Since φ is one - one, onto, homomorphism φ is an isomorphism between $\frac{G}{K}$ and G^{\prime}.

Hence $\frac{G}{K} \cong G^{\prime}$

Hence the proof.

