4.5 Homomorphism

Let (G, \cdot) and (G', *) be any two groups.

A mapping $f: G \to G'$ is said to be a homomorphism, if $f(a \cdot b) = f(a) * f(b)$

for any $a, b \in G$ is called a group homomorphism.

Example: (i)

Let $f:(Z,+) \to (Z,+)$ given by $f(x) = 2x \forall x \in Z$ is a homomorphism.

For,
$$x, y \in Z$$
, $f(x + y) = 2(x + y) = 2x + 2y = f(x) + f(y)$

Example: (ii)

Let $f:(R,+) \to (R^+, \cdot)$ given by $f(x) = e^x \forall x \in R$ is a homomorphism.

For,
$$x \in R$$
, $f(x + y) = e^{x+y} = e^x \cdot e^y = f(x) \cdot f(y)$

Isomorphism:

Let (G, \cdot) and (G', *) be any two groups. A mapping $f: G \to G'$ is said to be

KULAM, KANYAKU

isomorphism if

- (i) f is one one
- (ii) f is onto
- (iii) f is homomorphism

Types of Homomorphism

- (i) If f is one to one then f is monomorphism.
- (ii) (ii) If f is onto then f is epimorphism.

Theorem: 1

Har Homomorphism preserves identities. **Proof:** Let $a \in G$ Let f be a homomorphism from (G, *) and (G', *)*) Clearly $f(a) \in G'$ (e' - identity in G') $\Rightarrow f(a) * e' = f(a)$ = f(a * e) (e – identity in G), KANYA = f(a) * f(e) (f – homomorphism) ERVE OPTIMIZE OUTSPREAD $\Rightarrow e' = f(e)$ (Left cancellation law)

Hence f preserves identities.

Hence the proof.

Homomorphism preserves inverse.

Proof:

Let $a \in G$

Since G is a group, $a^{-1} \in G$

Since G is a group $a * a^{-1} = a^{-1} * a = e$

е

Consider
$$a * a^{-1} =$$

 $\Rightarrow f(a^{-1})$ is the inverse of $f(a) \in G'$

Hence $[f(a)]^{-1} = f(a^{-1})^{A} \mathcal{L}_{KULAM, KANYA}$

Hence f preserves inverse.

 $\Rightarrow \overline{f}(a \ast a^{-1}) = f(e)$

 $\Rightarrow f(a) * f(a^{-1}) = e' : e' = f(e), f \text{ is homomorphism}$

Kernal of Homomorphism

Let $f: G \to G'$ be a group homomorphism. The set of elements of G which are mapped into e' (identity in G') is called the kernel of f and it is denoted by ker(f)

$$\ker(f) = \{x \in G / f(x) = e'\}$$

Theorem: 1

Kernel of a homomorphism of a group into another group is a normal subgroup.

NEERING

Proof:

Let (G,*) and (G', \oplus) be two groups.

 $f: (G,*) \to (G', \oplus)$ is a homomorphism.

Define ker(f) = { $x \in G / f(x) = e'$ }

Claim: Ker f is a normal subgroup of G

We know that homomorphism preserves identity.

$$i.e., f(e) = e'$$
, so $e \in kerf$

 \Rightarrow Ker f is non empty.

(ii) $a, b \in \ker f \Rightarrow a * b^{-1} \in \ker f$ then ker f is a subgroup.

ALKULAM, KANYAKS

- $a \in kerf \Rightarrow f(a) = e'$ by definition of ker f
- $b \in kerf \Rightarrow f(b) = e'$ by definition of ker f

Since homomorphism preserves inverse $\Rightarrow [f(a)]^{-1} = f(a^{-1})$

Now $f(a * b^{-1}) = f(a) \oplus f(b^{-1})$

$$= f(a) \oplus [f(b)]^{-1}$$

$$= e' \oplus e'$$

$$= e'$$

$$\Rightarrow a * b^{-1} \in kerf$$
Hence kerf is a subgroup of G.
(iii)Let $a \in kerf \Rightarrow f(a) = e'$ by definition of kerf
Homomorphism preserves inverses $\Rightarrow [f(a)]^{-1} = f(a^{-1})$
So $f(g^{-1} * a * g) = f(g^{-1}) \oplus f(a) \oplus f(g)$

$$= [f(g)]^{-1} \oplus e' \oplus f(g)$$

$$= [f(g)]^{-1} \oplus e' \oplus f(g)$$
Hence by definition, $g^{-1} * a * g \in kerf$ LZE OUTSPREAD
Hence kerf is a normal subgroup.

Hence the proof.

Theorem:2

Fundamental theorem of group homomorphism

Every homomorphic image of a group G is isomorphic to some quotient group of G.

(**OR**)

Let $f: G \to G'$ be a onto homomorphism of groups with kernel K, then $\frac{G}{K} \cong G'$

Proof:

Let f be the homomorphism $f: G \to G$

Let G' be the homomorphic image of a group G.

Let K be the kernel of this homomorphism.

Clearly K is a normal subgroup of G.

Claim: $\frac{G}{K} \cong G'$

Define $\varphi: \frac{G}{K} \to G'$ by $\varphi(K * a) = f(a)$ for all $a \in G$

(i) φ is well defined.

We have K * a = K * b

$$\Rightarrow a * b^{-1} \in K$$

AM, KANYAKU

 $\Rightarrow f(a * b^{-1}) = e'$ (e' is identity)

$$\Rightarrow f(a) * f(b^{-1}) = e'$$

$$\Rightarrow f(a) * [f(b)]^{-1} = e'$$

$$\Rightarrow f(a) * [f(b)]^{-1} * f(b) = e' * f(b)$$

$$\Rightarrow f(a) = f(b)$$

$$\Rightarrow \varphi(K * a) = \varphi(K * b)$$
Hence φ is well defined.
(ii) To prove φ is one - one.
To prove $\varphi(K * a) = \varphi(K * b) \Rightarrow K * a = K * b$
We know that $\varphi(K * a) = \varphi(K * b)$

$$\Rightarrow f(a) = f(b)$$

$$\Rightarrow f(a) * f(b^{-1}) = f(b) * f(b^{-1})$$

$$= f(b * b^{-1})$$

$$= f(b * b^{-1})$$

$$= f(a * b^{-1}) = e'$$

$$\Rightarrow f(a * b^{-1}) = e'$$

$$\Rightarrow f(a * b^{-1}) = e'$$

$$\Rightarrow a * b^{-1} \in K$$

$$\Rightarrow K * a * b^{-1} = K$$

Hence φ is one – one.

(iii) φ is onto.

Let $y \in G'$

Since f is onto, there exists $a \in G$ such that f(a) = y

Hence
$$\varphi(K * a) = f(a) = y$$
 GINEER
Hence φ is onto.
(iv) φ is a homomorphism.
Now $\varphi(K * a * K * b) = \varphi(K * a * b)$
 $= f(a * b)$
 $= f(a) * f(b)$
 $= \varphi(K * a) * (K * b)$

Hence φ is a homomorphism.

Hence $\frac{G}{K} \cong G'$

Since φ is one – one, onto, homomorphism φ is an isomorphism between $\frac{G}{K}$ and G'.

ULAM, KANYAKU

Hence the proof.