2.6.COMPOSITEBEAMS(FLITCHEDBEAMS)

A beam made up of two or more different materials assumed to be rigidly connected together and behaving like a single piece is known as a composite beam or a wooden flitched beam. The strain at the common surface will be same for both materials. Also the totalmoment of resistance will be equal to the sum of the moments of individual sections.

Problem 19. a flitched beam consist of a wooden joist 10cm wide and 20cm deep strengthed by two steel plates 10mm thick and 20cm deep. If the max stress in the wooden joist is 7 N/mm². Find the corresponding max stress attained in steel. Find also the moment of resistance of the composite section. Take youngs modulus for steel = 2×10^5 N/mm² and for wood = 1×10^4 N/mm²

Given

Letwidthofwoodenjoist b_2 =10cm Depth of wooden joist d_2 = 20cm Width of one steel plate b_1 = 1cm Depth of one steel plate d_1 = 20cm Number of steel plate = 2 Maxstressinwood σ_2 =7N/mm²E for steel E_1 = 2× 10⁵N/mm² Eforwood E_2 =1×10⁴N/mm²

Solution:

M.O.I.ofwoodenjoistaboutN.A.

$$I_2 = b_{2d^2}/\frac{1}{2} = 6666.66cm^4$$

M.O.IoftwosteelplatesaboutN.A

$$I_2 = 2 \times b_{1d^3} = 1333.33 \times 10^4 mm^4$$

Nowusing $\sigma_{1/E_1} = \sigma_{2/E_2}$

 $\sigma_1 = 20 \times 7 = 140 \text{N/mm}^2$

TotalmomentM=
$$M_1+M_2$$

Where
$$M = \frac{\sigma 1 \times I}{1 \times 1}$$

= $\frac{140 \times 1333.33 \times 10^{4}}{100}$
= 18666.620Nm

$$M_{2} = \sigma_{2 \times} I_{2}$$

$$= \frac{7}{100} \times 6666.66 \times 10^{4} \text{Nmm}$$

$$= 4666.662 \text{Nm}$$

$$M = M_{1} + M_{2}$$

$$= 18666.620 + 4666.662$$

=23333.282Nm

IMPORTANTTERMS

Shearforce	Adding of vertical forces from right sidetotheconsiderpointofthebeam Symbol: Downwardforce=+ve Upward force = - ve	Diagram:Point load (W) = vertical line(upward force = downward lineDownwardforce=upwardline) UVL(w) - Inclined lineUVL(w)-paraboliccurveCantileverBeam:+vesideSSB : + ve or - veOHB: + veor - ve
Bending moment	Adding of bending moment from rightsidetotheconsiderpointofthe beam.Symbol:Clockwise direction = - veAnticlockwisedirection=+veCLB : free end = 0SSB : Both end = 0OHB:Both end=0	Diagram: Point load (W) – Inclined line (upwardforce=downwardline Down force = upward line UVL (w) – parabolic curve UVL (w) – Cubic Curve Cantilever Beam : - ve side SSB : + ve OHB: + veor – ve
CantileverBeam	Addingofvertical forces	PL=addonlyW UDL = Add (Force x distance)
SSB	Step1:Tofindreactionforcesattwo support (R _A , R _B) TakemomentaboutA=0tofind Reaction R _B Sumofupwardforce=downward force; to find reaction R _A	UDLactingpoint=midpoint=l/2 UVL = add (wl/2) UVLactingpointfromsmallend= 2l/3 UVLactingpoint from bigend=l/3

OHB	SameprocedureasSSB SF	Maximumbending moment
	with Reaction &	atshearforcebecomezero (SF=0)
	withoutreaction calculate	Point of contrafluxture act at Bendingmomentbecomezero(BM= 0)
BENDINGSTRESSIN BEAM		
BendingEquation	$\frac{M}{M} = \frac{\sigma_{max}}{\sigma_{max}} = \frac{E}{M}$	M=BendingMoment
	I y _{max} R	I=Momentof Inertia
		$\sigma=Bendingstress$
	Basedontypeofbeamwithsupport to find M which is available in IVunit	y = distance of Neutralax is
	table	E=Youngsmodulus
	× /	R=Bendingradius
Section Modulus ForUnsymmetrical	$Z = \frac{1}{y}$ $= \frac{bd^2}{section6} for Rectangular$ $= \frac{1}{Rect6D^3} - bd^3 hollow$ Step 1: to find C G of the section in ydi	$= \frac{\pi d^3}{section 32}$ for circular $= \frac{\pi}{circlr 32D} d^4)hollow$
section	Step1: to find C.G of the section in ydirection = but max value of yis used in bending eqn.	
	Step2:tofindMomentofinertiaofthesection=I Step3:	
	from Moment eqn to find unknown val	ue
Momentofresistanceof a section	$M = \sigma x Z$	- • • •
Composite beam(Flitchedbeams)	Strainremains same $e = e_1 = \frac{\sigma_1}{E_1} = \frac{\sigma_2}{E_1}$	
ModularRatio	$=\frac{E_1}{E_2}$	