2.6.COMPOSITEBEAMS(FLITCHEDBEAMS)

A beam made up of two or more different materials assumed to be rigidly connected together and behaving like a single piece is known as a composite beam or a wooden flitched beam. The strain at the common surface will be same for both materials. Also the totalmoment of resistance will be equal to the sum of the moments of individual sections.

Problem 19. a flitched beam consist of a wooden joist 10 cm wide and 20 cm deep strengthed by two steel plates 10 mm thick and 20 cm deep. If the max stress in the wooden joist is 7 $\mathrm{N} / \mathrm{mm}^{2}$. Find the corresponding max stress attained in steel. Find also the moment of resistance of the composite section. Take youngs modulus for steel $=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and for $\operatorname{wood}=1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$

Given

Letwidthofwoodenjoist $b_{2}=10 \mathrm{~cm}$ Depth of wooden joist $d_{2}=20 \mathrm{~cm}$ Width of one steel plate $b_{1}=1 \mathrm{~cm}$ Depth of one steel plate $d_{1}=20 \mathrm{~cm}$ Number of steel plate $=2$
Maxstressinwood $\sigma_{2}=7 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{E}$
for steel $E_{1}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
Eforwood $E_{2}=1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$

Solution:

M.O.I.ofwoodenjoistaboutN.A.

$$
I_{2}=b_{2 d^{2}} / \frac{12}{2}=6666.66 \mathrm{~cm}^{4}
$$

M.O.IoftwosteelplatesaboutN.A

$$
I_{2}=2 \times b_{1 d^{3}}=1333.33 \times 10^{4} \mathrm{~mm}^{4}
$$

Nowusing $\sigma_{1 / E_{1}}=\sigma_{2 / E_{2}}$

$$
\sigma_{1}=20 \times 7=\mathbf{1 4 0 N} / \mathrm{mm}^{2}
$$

TotalmomentM $=M_{1}+M_{2}$
Where

$$
\begin{aligned}
& \begin{array}{l}
M
\end{array}=\frac{\sigma 1}{1} \times I \\
&=1 \\
&=\frac{140 \times 1333.33 \times 10^{4}}{100} \\
&=18666.620 \mathrm{Nm}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
M_{2}
\end{array}=\sigma_{\underline{2}} \times I_{2} \\
&={ }^{7} \\
&=100 \\
&= 466666662 \mathrm{Nm} \\
& \mathrm{M}= M_{1}+M_{2} \\
&= 18666.620+4666.662 \\
&=\mathbf{2 3 3 3 3} .282 \mathrm{Nm}
\end{aligned}
$$

IMPORTANTTERMS

Shearforce	Adding of vertical forces from right sidetotheconsiderpointofthebeam Symbol: Downwardforce=+ve Upward force $=-\mathrm{ve}$	Diagram: Point load (W) = vertical line (upward force $=$ downward line Downwardforce=upwardline) UVL (w) - Inclined line UVL(w)-paraboliccurve CantileverBeam:+veside SSB : + ve or - ve OHB: + veor - ve
Bending moment	Adding of bending moment from rightsidetotheconsiderpointofthe beam. Symbol: Clockwise direction $=-$ ve Anticlockwisedirection=+ve CLB : free end $=0$ SSB: Both end $=0$ OHB:Both end=0	Diagram: Point load (W) - Inclined line (upwardforce=downwardline Down force $=$ upward line UVL (w) - parabolic curve UVL (w) - Cubic Curve Cantilever Beam : - ve side $\begin{aligned} & \text { SSB : + ve } \\ & \text { OHB: + veor }-\mathrm{ve} \end{aligned}$
CantileverBeam	Addingofvertical forces	$\begin{aligned} & \text { PL=addonlyW } \\ & \text { UDL = Add (Force } \mathrm{x} \text { distance) } \end{aligned}$
SSB	Step1:Tofindreactionforcesattwo support $\left(\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}\right)$ TakemomentaboutA=0tofind Reaction R_{B} Sumofupwardforce=downward force; to find reaction R_{A}	UDLactingpoint=midpoint=l/2 $\mathrm{UVL}=\operatorname{add}(\mathrm{w} / / 2)$ UVLactingpointfromsmallend= 2l/3 UVLactingpoint from bigend= $=/ / 3$

OHB	SameprocedureasSSB SF with Reaction \& withoutreaction calculate	Maximumbending moment $\text { atshearforcebecomezero } \quad(\mathrm{SF}=0)$ Point of contrafluxture act at Bendingmomentbecomezero($\mathrm{BM}=0$)
BENDINGSTRESSIN BEAM		
BendingEquation	$\frac{M}{I}=\frac{\sigma_{\max }}{y_{\max }}=\frac{E}{R}$ Basedontypeofbeamwithsupport to find M which is available in IVunit table	M=BendingMoment I=MomentofInertia $\sigma=$ Bendingstress $y=$ distanceof Neutralaxis $E=$ Youngsmodulus $R=$ Bendingradius
Section Modulus	$\begin{aligned} & \quad Z=\frac{1}{y} \\ & =\frac{b d^{2}}{\text { section }} \text { for Rectangular } \\ & =\frac{1}{\text { Rect } \left.6 D^{3}-b d^{3}\right) \text { hollow }} \end{aligned}$	$\begin{aligned} & =\frac{\pi d^{3}}{\text { section } 32} \text { circular } \\ = & \frac{\pi}{\text { circlr}}\left(D^{4}-d^{4}\right) \text { hollow } \end{aligned}$
ForUnsymmetrical section	Step1: to find C.G of the section in ydirection = 7out max value of yis used in bending eqn. Step2:tofindMomentofinertiaofthesection=I Step3: from Moment eqn to find unknown value	
Momentofresistanceof a section	$M=\sigma x Z$	
Composite beam(Flitchedbeams)	Strainremains same $e_{1}^{e=e} \quad=\frac{\sigma_{1}}{E_{1}}=\frac{\sigma_{2}}{E_{2}}$	
ModularRatio	$=\frac{E_{1}}{E_{2}}$	

