
UNIT II SEARCH METHODS AND VISUALIZATION

Search by simulated Annealing – Stochastic, Adaptive search by Evaluation – Evaluation

Strategies –Genetic Algorithm – Genetic Programming – Visualization – Classification of

Visual Data Analysis Techniques – Data Types – Visualization Techniques – Interaction

techniques – Specific Visual data analysis Techniques

SEARCH BY SIMULATED ANNEALING

Simulated annealing (SA) is a probabilistic technique for approximating the global

optimum of a given function. Specifically, it is a metaheuristic to approximate global

optimization in a large search space for an optimization problem. For large numbers of

local optima, SA can find the global optima. It is often used when the search space is

discrete (for example the traveling salesman problem, the boolean satisfiability problem,

protein structure prediction, and job-shop scheduling). For problems where finding an

approximate global optimum is more important than finding a precise local optimum in a

fixed amount of time, simulated annealing may be preferable to exact algorithms such as

gradient descent or branch and bound.

The name of the algorithm comes from annealing in metallurgy, a technique

involving heating and controlled cooling of a material to alter its physical properties. Both

are attributes of the material that depend on their thermodynamic free energy. Heating and

cooling the material affects both the temperature and the thermodynamic free energy or

Gibbs energy. Simulated annealing can be used for very hard computational optimization

problems where exact algorithms fail; even though it usually achieves an approximate

solution to the global minimum, it could be enough for many practical problems.

The problems solved by SA are currently formulated by an objective function of

many variables, subject to several mathematical constraints. In practice, the constraint can

be penalized as part of the objective function.

SIMULATED ANNEALING PROCESS

The state s of some physical systems, and the function E(s) to be minimized, is

analogous to the internal energy of the system in that state. The goal is to bring the system,

from an arbitrary initial state, to a state with the minimum possible energy.

The basic iteration

At each step, the simulated annealing heuristic considers some neighboring state s*

of the current state s, and probabilistically decides between moving the system to state s*

or staying in state s. These probabilities ultimately lead the system to move to states of

lower energy. Typically this step is repeated until the system reaches a state that is good

enough for the application, or until a given computation budget has been exhausted.

The neighbors of a state

https://en.wikipedia.org/wiki/Probabilistic_algorithm
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Solution_space
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Protein_structure_prediction
https://en.wikipedia.org/wiki/Job-shop_scheduling
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Annealing_(metallurgy)
https://en.wikipedia.org/wiki/Physical_properties
https://en.wikipedia.org/wiki/Thermodynamic_free_energy
https://en.wikipedia.org/wiki/Gibbs_energy
https://en.wikipedia.org/wiki/Objective_function
https://en.wikipedia.org/wiki/Mathematical_constraints
https://en.wikipedia.org/wiki/Thermodynamic_state
https://en.wikipedia.org/wiki/Physical_system
https://en.wikipedia.org/wiki/Internal_energy
https://en.wikipedia.org/wiki/Probabilistic

Optimization of a solution involves evaluating the neighbors of a state of the

problem, which are new states produced through conservatively altering a given state. For

example, in the traveling salesman problem each state is typically defined as a permutation

of the cities to be visited, and the neighbors of any state are the set of permutations

produced by swapping any two of these cities. The well-defined way in which the states

are altered to produce neighboring states is called a "move", and different moves give

different sets of neighboring states. These moves usually result in minimal alterations of

the last state, in an attempt to progressively improve the solution through iteratively

improving its parts (such as the city connections in the traveling salesman problem).

Simple heuristics like hill climbing, which move by finding better neighbor after

better neighbor and stop when they have reached a solution which has no neighbors that

are better solutions, cannot guarantee to lead to any of the existing better solutions – their

outcome may easily be just a local optimum, while the actual best solution would be a

global optimum that could be different. Metaheuristics use the neighbors of a solution as a

way to explore the solution space, and although they prefer better neighbors, they also

accept worse neighbors in order to avoid getting stuck in local optima; they can find the

global optimum if run for a long enough amount of time.

Acceptance probabilities

The probability of making the transition from the current state s to a candidate new

state snew is specified by an acceptance probability function P(e, enew, T), that depends on

the energies e = E(s) and enew = E(snew) of the two states, and on a global time-varying

parameter T called the temperature. States with a smaller energy are better than those with

a greater energy. The probability function P must be positive even when enew is greater than

e. This feature prevents the method from becoming stuck at a local minimum that is worse

than the global one.

When T tends to zero, the probability P(e, enew, T) must tend to zero if enew > e and

to a positive value otherwise. For sufficiently small values of T, the system will then

increasingly favor moves that go "downhill" (i.e., to lower energy values), and avoid those

that go "uphill." With T=0 the procedure reduces to the greedy algorithm, which makes

only the downhill transitions.

In the original description of simulated annealing, the probability P(e, enew, T) was

equal to 1 when enew < e i.e., the procedure always moved downhill when it found a way to

do so, irrespective of the temperature. Many descriptions and implementations of simulated

annealing still take this condition as part of the method's definition. However, this condition

is not essential for the method to work.

The P function is usually chosen so that the probability of accepting a move

decreases when the difference enew - e increases—that is, small uphill moves are more likely

https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Hill_climbing
https://en.wikipedia.org/wiki/Local_optimum
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/State_transition
https://en.wikipedia.org/wiki/Greedy_algorithm

than large ones. However, this requirement is not strictly necessary, provided that the above

requirements are met.

Given these properties, the temperature T plays a crucial role in controlling the

evolution of the state s of the system with regard to its sensitivity to the variations of system

energies. To be precise, for a large T, the evolution of s is sensitive to coarser energy

variations, while it is sensitive to finer energy variations when T is small.

The annealing schedule

The name and inspiration of the algorithm demand an interesting feature related to

the temperature variation to be embedded in the operational characteristics of the

algorithm. This necessitates a gradual reduction of the temperature as the simulation

proceeds. The algorithm starts initially with T set to a high value (or infinity), and then it

is decreased at each step following some annealing schedule—which may be specified by

the user but must end with T=0 towards the end of the allotted time budget. In this way,

the system is expected to wander initially towards a broad region of the search space

containing good solutions, ignoring small features of the energy function; then drift

towards low-energy regions that become narrower and narrower, and finally move

downhill according to the steepest descent heuristic.

For any given finite problem, the probability that the simulated annealing algorithm

terminates with a global optimal solution approaches 1 as the annealing schedule is

extended. This theoretical result, however, is not particularly helpful, since the time

required to ensure a significant probability of success will usually exceed the time required

for a complete search of the solution space.

Pseudocode

The following pseudocode presents the simulated annealing heuristic as described

above. It starts from a state s0 and continues until a maximum of kmax steps have been

taken. In the process, the call neighbour(s) should generate a randomly chosen neighbour

of a given state s; the call random(0, 1) should pick and return a value in the range [0, 1],

uniformly at random. The annealing schedule is defined by the call temperature(r), which

should yield the temperature to use, given the fraction r of the time budget that has been

expended so far.

● Let s = s0

● For k = 0 through kmax (exclusive):

● T ← temperature(1 - (k+1)/kmax)

● Pick a random neighbour, snew ← neighbour(s)
● If P(E(s), E(snew), T) ≥ random(0, 1):

● s ← snew

https://en.wikipedia.org/wiki/Steepest_descent
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Solution_space
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

● Output: the final state s

Example: Traveling Salesman Problem:

The dataset used in this exercise is a symmetric TSP which means that the distance

from city i to city j is the same distance from city j to city i for all cities in the route. The

dataset can be found here, along with other TSP datasets.

Each node in the Traveling Salesman problem dataset represents a city. The TSP

comes with the following constraints:

● The starting node must be the end node.

● Each node must be visited once and only once.

These nodes are connected to form routes. Each route represents a possible

solution/candidate/individual. The fitness of these individuals is taken to be the inverse of

the total distance traveled taking that route. The distance traveled between node i and node

j is given by:

where i ≠ j. We take fitness to be the inverse of the distance

traveled in the entire route (Fij = 1/dij) because we want to

maximize fitness when our algorithm selects a candidate. An

example of an individual representation of a route with 10 cities

is “1–4–3–2–5–6–7–8–9–10”.

Simulated Annealing

This method has been commonly referred to as one of the oldest metaheuristic

models². It has great performance in avoiding local minima. In order to do this, the

algorithm accepts worse candidates with a probability dependent on the temperature (a

control variable) and the fitness difference given by the formula below:

p — the probability of accepting the new solution candidate, y.

x — initial solution candidate (In this case, that is a route)

y — new solution candidate

f(x) — is the function that measures the performance of the solution candidate

(Fitness function)

T — the temperature which is the control parameter.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

The Algorithm implemented can be summarized by the flowchart below:

The code below shows how to calculate the fitness:

def get_cost(state):

"""Calculates cost/fitness for the solution/route."""

distance = 0

for i in range(len(state)):

from_city = state[i]

to_city = None

if i+1 < len(state):

to_city = state[i+1]

else:

to_city = state[0]

distance += data.get_weight(from_city, to_city)

fitness = 1/float(distance)

return fitness

Because our probability of accepting worse new candidates is dependent on the

temperature, as the temperature cools, eventually we will only accept candidates that are

better than the present one.

Generating Candidate Solutions

Because the simulated annealing algorithm compares different candidate solutions

and decides which one is taken at each iteration, it is necessary to be able to generate these

solutions. In this article, four methods were used, three of which were inspired from²:

● Inverse operator (x): This changes the order of routes between

two randomly selected nodes i and j. Where i,j ≤ 0 ≤ n such

that x¹[i] = x[j], x¹[i+1] = x[j-1], etc. Hopefully, an example

makes it clearer. Let’s say the initial route is ‘1–2–3–4–5–6’,

this operator could produce ‘1–4–3–2–5–6’. The random

positions selected in this example are city 2 and city 5. The

minimum integer between i and j will be ‘i’ and the maximum

would be taken as ‘j’.

def inverse(state):

"Inverses the order of cities in a route between node one and node two"

node_one = random.choice(state)

new_list = list(filter(lambda city: city != node_one, state))

node_two = random.choice(new_list)

state[min(node_one,node_two):max(node_one,node_two)]=

state[min(node_one,node_two):max(node_one,node_two)][::-1]

return state

● Swap operator (x): This exchanges the position of two cities in a route. Two

positions, i and j are selected at random and the cities in these positions are swapped

with each other. ‘1–2–3–4–5–6’ could become ‘1–5–3–4–2–6’.

def swap(state):

"Swap cities at positions i and j with each other"

pos_one = random.choice(range(len(state)))

pos_two = random.choice(range(len(state)))

state[pos_one], state[pos_two] = state[pos_two], state[pos_one]

return state

● Insert operator(x): · This operator selects a city at random position ‘i’ and moves

it to a random position ‘j’ elsewhere in the route.

def insert(state):

"Insert city at node j before node i"

node_j = random.choice(state)

state.remove(node_j)

node_i = random.choice(state)

index = state.index(node_i)

state.insert(index, node_j)

return state

● Insert subroutes(x): This is similar to the swap route operator but rather than

inserting a city in a different position, a range of cities are selected as a sub route

and inserted at a random position.

def swap_routes(state):

"Select a subroute from a to b and insert it at another position in the route"

subroute_a = random.choice(range(len(state)))

subroute_b = random.choice(range(len(state)))

subroute = state[min(subroute_a,subroute_b):max(subroute_a, subroute_b)]

del state[min(subroute_a,subroute_b):max(subroute_a, subroute_b)]

insert_pos = random.choice(range(len(state)))

for i in subroute:

state.insert(insert_pos, i)

return state

Termination Condition

While several simulated annealing algorithms terminate once the temperature

reaches 0. To have a very large search space, this algorithm only terminates once a

candidate has been selected 1500 times and the same fitness score has occurred 150000

times.

STOCHASTIC, ADAPTIVE SEARCH BY EVOLUTION

Computer algorithms modeling the search processes of natural evolution are crude

simplifications of biological reality. However, during nearly three decades of research and

application, they have turned out to yield robust, flexible and efficient algorithms for

solving a wide range of optimization problems.

Variation and Selection:

An Evolutionary Algorithm Scheme Evolutionary algorithms (EAs) simulate a

collective learning process within a population of individuals. More advanced EAs even

rely on competition, cooperation and learning among several populations. Each individual

represents a point (structure) in the search space of potential solutions to a specific machine

learning problem. After arbitrary initialization of the population, the set of individuals

evolves toward better and better regions of the search space by means of partly stochastic

processes while the environment provides feedback information (quality, fitness) about the

search points:

● Selection: It is deterministic in some algorithms, favors those individuals of better

fitness to reproduce more often than those of lower fitness.

● Mutation: introduces innovation by random variation of the individual structures.

● Recombination: which is omitted in some EA realizations, allows the mixing of

parental genetic information while passing it to their descendants.

Figure shows the basic scheme of an evolutionary algorithm. Let G denote the

search space and let η : G —> K be the fitness function that assigns a real value η(σi) to

each individual structure encoded by a "genome" gi ∈ G. A population G(t) =

{g1{t),... ,gμ(t)} at generation t is described by a (multi) set of μ individuals. From a parent

population of size μ > 1 an offspring population of size λ > 1 is created by means of

recombination and mutation at each generation.

A recombination operator ωrec : Gμ → Gλ, controlled by additional parameters

Θ(ωrec), generates λ structures as a result of combining the genetic information of μ

individuals.

A mutation operator ωmut : Gλ → Gλ modifies a subpopulation of λ individuals, again

being controlled by parameters Θ(ωmut)- All the newly created solutions of the population

set G" are evaluated. The selection operator σ chooses the parent population for the next

generation. The selection pool consists of the λ generated offspring. In some cases, the

parents are also part of the selection pool, denoted by the extension set Q = G(t). Otherwise,

the extended selection set Q is empty, Q = Ø. Therefore, the selection operator is defined

as σ : Gλ x Kλ → Gμ or σ : Gλ+μ x Kλ+μ → Gμ. The termination criterion τ either makes the

evolution loop stop after a predefined number of generations, or when an individual

exceeding a maximum fitness value has been found.

The Role of Randomness in Evolutionary Learning

The principle dynamic elements that evolutionary algorithms simulate are

innovation caused by mutation combined with natural selection. Driving a search process

by randomness is, in some way, the most general procedure that can be designed.

Increasing order among the population of solutions and causing learning by randomly

changing the solution encoding structures may look counterintuitive. However, random

changes in combination with fitness-based selection make a formidable and more flexible

search paradigm as demonstrated by nature's optimization methods. On average, it is better

to explore a search space non-deterministically. This is independent of whether the search

space is small enough to allow exhaustive search or whether it is so large that only sampling

can reasonably cover it. At each location in a non-deterministic search, the algorithm has

the choice of where to go next. Meaning that stochastic search — in combination with a

selection procedure which might also be non-deterministic, at least to some degree — is

used as a major tool not only to explore but also to exploit the search space. In simulated

annealing the Metropolis algorithm also relies on the stochastic search of the Perturb

procedure which generates a new solution that competes with the current (best) solution.

Evolutionary algorithms use operators like mutation and recombination (in some EA

variants even more "genetic" operators are used) to produce new variants of already

achieved solutions. These operators rely heavily on randomness: mutation may randomly

change parameter settings of a solution encoding vector, and also the mixing of genes by

recombination of two solutions is totally non-deterministic. EA-based search algorithms

rely on evolution's "creative potential" which is largely due to a controlled degree of

randomness.

