ANOVA - Analysis of Variance

Working Rule (One - Way Classification)

Set the null hypothesis H_{0} : There is no significance difference between the treatments.

Set the alternative hypothesis H_{1} : There is a significance difference between the treatments.

Step: 1 Find $\mathrm{N}=$ number of observations
Step: 2 Find T = The total value of observations
Step: 3 Find the Correction Factor C.F $=\frac{T^{2}}{N}$
Step: 4 Calculate the total sum of squares and find the total sum of squares

$$
\text { TSS }=\left(\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\ldots\right)-C . F
$$

Step: 5 Column sum of squares $\operatorname{SSC}\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F$ Where $N_{i}=$ Total number of observation in each column $(i=1,2,3, \ldots)$

Step: 6 Prepare the ANOVA to calculate F - ratio

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Samples	SSC	K -1	MSC $=\frac{S S C}{K-1}$	$F_{c}=\frac{M S C}{M S E}$ if MSC $>$ MSE
Within Samples	SSE	$\mathrm{N}-\mathrm{K}$	MSE $=\frac{S S E}{N-K}$	$F_{c}=\frac{M S E}{M S C}$ if MSE $>$ MSC

Step: 7 Find the table value (use chi square table)
Step: 8 Conclusion:
Calculated value $<$ Table value, then we accept null hypothesis.
Calculated value $>$ Table value, then we reject null hypothesis.

PROBLEMS ON ONE WAY ANOVA

1.A completely randomised design experiment with 10 plots and 3 treatments gave the following results.

Plot No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Treatment	A	B	C	A	C	C	A	B	A	B

\section*{| Yield | 5 | 4 | 3 | 7 | 5 | 1 | 3 | 4 | 1 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Analyse the result for treatment effects.

Solution:

Set the null hypothesis H_{0} : There is no significance difference between the treatments.

Set the alternative hypothesis H_{1} : There is a significance difference between the treatments.

Treatments	Yields from plots			
A	5	7	3	1
B	4	4	7	-
C	3	5	1	-

TABLE:

Treatment A		Treatment B		Treatment C	
X_{1}	$X_{1}{ }^{2}$	X_{2}	$X_{2}{ }^{2}$	X_{3}	$X_{3}{ }^{2}$
5	25	4	16	3	9
7	49	4	16	5	25
3	9	7	49	7	7
1	1	-	-	-	-
$\sum X_{1}=16$	$\sum X_{1}{ }^{2}=84$	$\sum X_{2}=5$	$\sum X_{2}{ }^{2}=81$	$\sum X_{3}=9$	$\sum X_{3}{ }^{2}=35$

Step: $1 \mathrm{~N}=10$
Step: 2 Sum of all the items $(\mathrm{T})=\sum X_{1}+\sum X_{2}+\sum X_{3}=16+15+9=40$
Step: 3 Find the Correction Factor C . F $=\frac{T^{2}}{N}=\frac{(40)^{2}}{10}=160$
Step: 4 TSS $=$ Total sum of squares

$$
\begin{aligned}
& =\text { sum of squares of all the items }- \text { C. } \mathrm{F} \\
\mathrm{TSS} & =\left(\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\ldots\right)-\text { C.F } \\
& =(84+81+35)-160=40
\end{aligned}
$$

Step: 5 SSC $=$ Sum of squares between samples

$$
\begin{aligned}
& \mathrm{SSC}=\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F \\
& \mathrm{SSC}=\left(\frac{(16)^{2}}{4}+\frac{(15)^{2}}{3}+\frac{(9)^{2}}{3}+\ldots\right)-160
\end{aligned}
$$

$$
=64+75+27-160=6
$$

Step: $6 \mathrm{MSC}=$ Mean squares between samples

$$
\begin{aligned}
& =\frac{\text { Sum of squares between samples }}{\text { d.f }} \\
& =\frac{6}{2}=3
\end{aligned}
$$

$\mathrm{SSE}=$ Sum of squares within samples

$$
\begin{aligned}
& =\text { Total sum of squares }- \text { Sum of squares between samples } \\
& =40-6=34
\end{aligned}
$$

Step:7 MSE = Mean squares within samples

$$
\begin{aligned}
& =\frac{\text { Sum of squares within samples }}{d . f} \\
& =\frac{34}{7}=4.86
\end{aligned}
$$

ANOVA TABLE

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	$\mathrm{F}-$ Ratio
Between Samples	$\mathrm{SSC}=6$	$\mathrm{~K}-1=3-1=2$	$\mathrm{MSC}=\frac{S S C}{K-1}=3$	
Within Samples	$\mathrm{SSE}=34$	$\mathrm{~N}-\mathrm{K}=10-3=7$	$\mathrm{MSE}=\frac{S S E}{N-K}=$ 4.86	$F_{C}=\frac{M S E}{M S C}=1.62$

d.f for $(7,2)$ at 5% level of significance is 19.35

Step: 8 Conclusion:
Calculated value $<$ Table value, then we accept null hypothesis.
2. Three different machines are used for a production. On the basis of the outputs, set up one - way ANOVA table and test whether the machines are equally effective.

Outputs		
Machine I	Machine II	Machine III
10	9	20
15	7	16
11	5	10

10	6	14

Given that the value of \mathbf{F} at $\mathbf{5 \%}$ level of significance for $(\mathbf{2}, 9) \mathrm{d}$. f is 4.26

Solution:

Set the null hypothesis H_{0} : The machines are equally effective.

TABLE:

Treatment A		Treatment B		Treatment C	
X_{1}	$X_{1}{ }^{2}$	X_{2}	$X_{2}{ }^{2}$	X_{3}	$X_{3}{ }^{2}$
10	100	9	81	20	400
15	225	7	49	16	256
11	121	5	25	10	100
20	400	6	36	14	196
$\sum X_{1}=56$	$\sum X_{1}{ }^{2}=846$	$\sum X_{2}=27$	$\sum X_{2}{ }^{2}=191$	$\sum X_{3}=60$	$\sum X_{3}{ }^{2}=952$

Step: $1 \mathrm{~N}=12$
Step: 2 Sum of all the items $(\mathrm{T})=\sum X_{1}+\sum X_{2}+\sum X_{3}=56+27+60=143$
Step: 3 Find the Correction Factor C. $\mathrm{F}=\frac{T^{2}}{N}=\frac{(143)^{2}}{12}=1704.08$
Step: 4 TSS $=$ Total sum of squares

$$
\begin{aligned}
& =\text { sum of squares of all the items }- \text { C. F } \\
\text { TSS } & =\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F \\
& =(846+191+952)-1704.08=284.92
\end{aligned}
$$

Step: 5 SSC $=$ Sum of squares between samples

$$
\begin{aligned}
\mathrm{SSC} & =\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F \\
\mathrm{SSC} & =\left(\frac{(56)^{2}}{4}+\frac{(27)^{2}}{4}+\frac{(60)^{2}}{4}+\ldots\right)-1704.08 \\
& =784+182.25+900-1704.08=162.17
\end{aligned}
$$

Step: 6 MSC $=$ Mean squares between samples

$$
\begin{aligned}
& =\frac{\text { Sum of squares between samples }}{d . f} \\
& =\frac{162.17}{2}=81.085
\end{aligned}
$$

SSE $=$ Sum of squares within samples

$$
\begin{aligned}
& =\text { Total sum of squares }- \text { Sum of squares between samples } \\
& =284.92-162.17=122.75
\end{aligned}
$$

Step: $7 \mathrm{MSE}=$ Mean squares within samples

$$
\begin{aligned}
& =\frac{\text { Sum of squares within samples }}{d . f} \\
& =\frac{122.75}{9}=13.63
\end{aligned}
$$

ANOVA TABLE

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	$\mathrm{F}-$ Ratio
Between Samples	$\mathrm{SSC}=$ 162.17	$\mathrm{~K}-1=3-1=2$	$\mathrm{MSC}=\frac{S S C}{K-1}=$	
Within Samples	$\mathrm{SSE}=$ 122.75	$\mathrm{~N}-\mathrm{K}=12-3=9$	$\mathrm{MSE}=\frac{S S E}{N-K}=$	$F_{c}=\frac{M S E}{M S C}=5.95$

d.f for $(2,9)$ at 5% level of significance is 4.26 .

Step: 8 Conclusion:
Calculated value $>$ Table value, then we reject the null hypothesis.
i.e., the three machines are not equally effective.

Randomised Block Design (RBD)

Working Rule:

Set the null hypothesis H_{0} : There is no significance difference between the treatments.

Step: 1 Find $\mathrm{T}=$ The total value of observations
Step: 2 Find the Correction Factor C.F $=\frac{T^{2}}{N}$
Step: 3 Calculate the total sum of squares and find the total sum of squares

$$
\mathrm{TSS}=\left(\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\ldots\right)-C . F
$$

Step: 4 Find column sum of squares $\mathrm{SSC}=\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-$ C. F

Where $N_{i}=$ Total number of observation in each column $(i=1,2,3, \ldots)$
Step: 5 Find Column sum of squares $\operatorname{SSR}=\left(\frac{\left(\sum Y_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum Y\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{3}}+\ldots\right)-$ C.F

Where $N_{J}=$ Total number of observation in each ROW $(j=1,2,3, \ldots)$
Step: 6 SSE $=\mathrm{TSS}-(\mathrm{SSC}+\mathrm{SSR})$
Step: 7 Prepare the ANOVA to calculate F - ratio

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Columns	SSC	$\mathrm{c}-1$	MSC $=\frac{S S C}{c-1}$	$F_{c}=\frac{M S C}{M S E}$ if MSC $>$ MSE $F_{c}=\frac{M S E}{M S C}$ if MSE $>$ MSC
Between Rows	SSR	$\mathrm{r}-1$	MSR $=\frac{S S E}{r-1}$	$F_{c}=\frac{M S R}{M S E}$ if MSR $>$ MSE $F_{c}=\frac{M S E}{M S R}$ if MSE $>$ MSR
Error	SSE	$(\mathrm{r}-1)(\mathrm{c}-1)$	$\mathrm{MSE}=$ $\frac{S S E}{(\mathrm{r}-1)(\mathrm{c}-1)}$	

Step: 8 Find the table value (use chi square table)
Step: 9 Conclusion:
Calculated value $<$ Table value, then we accept null hypothesis.
Calculated value $>$ Table value, then we reject null hypothesis.

PROBLEMS ON TWO WAY ANOVA TABLE

1. Three varieties A, B, C of a crop are tested in a randomized block design with four replication. The plot yields in pounds as follows.

A6	C5	A8	B9
C8	A4	B6	C9
B7	B6	C10	A6

Analysis the experiment yield and state your conclusion.

Solution:

Set the null hypothesis H_{0} : There is no significance difference between the rows and columns.

Varieties	Yields						2	3	4	Total
	1	4	8	6	24					
A	6	6	6	9	28					
B	7	5	10	9	32					
C	8	15	24	24	84					
Total	21	15								

TEST STATISTIC:

Varieties		1	2	3	4	Total	$X_{1}{ }^{2}$	$X_{2}{ }^{2}$	$X_{3}{ }^{2}$	$X_{4}{ }^{2}$
	X_{1}	X_{2}	X_{3}	X_{4}						
Y_{1}	A	6	4	8	6	24	36	16	64	36
Y_{2}	B	7	6	6	9	28	49	36	36	81
Y_{3}	C	8	5	10	9	32	64	25	100	81
Total		21	15	24	24	84	149	77	200	198

Step: 1 Grand Total T = 84
Step: 2 Correction Factor C. $\mathrm{F}=\frac{T^{2}}{N}=\frac{(84)^{2}}{12}=588$
Step: 3 Calculate the total sum of squares and find the total sum of squares

$$
\begin{aligned}
\text { TSS } & =\left(\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\ldots\right)-C . F \\
& =(149+77+200+198)-588 \\
& =624-588=36
\end{aligned}
$$

Step: 4 Find column sum of squares $\operatorname{SSC}=\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-$ C.F

$$
\mathrm{SSC}=\left(\frac{(21)^{2}}{3}+\frac{(15)^{2}}{3}+\frac{(24)^{2}}{3}+\frac{(24)^{2}}{3}\right)-588=18
$$

Step: 5 Find Row sum of squares $\operatorname{SSR}=\left(\frac{\left(\Sigma Y_{1}\right)^{2}}{N_{1}}+\frac{(\Sigma Y)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F$

$$
\operatorname{SSR}=\left(\frac{(24)^{2}}{4}+\frac{(28)^{2}}{4}+\frac{(32)^{2}}{4}+\ldots\right)-588=8
$$

Step: 6 SSE $=$ Residual sum of squares

$$
\begin{aligned}
& =\mathrm{TSS}-(\mathrm{SSC}+\mathrm{SSR}) \\
& =36-(18+8) 10
\end{aligned}
$$

Step: 7 Prepare the ANOVA to calculate F - ratio

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Columns	SSC $=18$	$\mathrm{c}-1$ $=4-1=3$	$\mathrm{MSC}=\frac{S S C}{c-1}=$ 6	$F_{c}=\frac{M S C}{M S E}=3.6$
Between Rows	SSR=8	$\mathrm{r}-1$ $=3-1=2$	$\mathrm{MSR}=\frac{S S R}{r-1}$ 4	$F_{R}=\frac{M S R}{M S E}=2.4$
Error	$\mathrm{SSE}=10$	$(\mathrm{r}-1)(\mathrm{c}-1)$ $2 \times 3=6$	$\mathrm{MSE}=$ $\frac{S S E}{(\mathrm{r}-1)(\mathrm{c}-1)}$ 1.667	

Step: 8 d.f for $(3,6)$ at 5% level of significance is 4.76
d.f for $(2,6)$ at 5% level of significance is 5.14

Step: 9 Conclusion:
Calculated value $F_{c}<$ Table value, then we accept null hypothesis.
There is no significance difference between the columns.
Calculated value $F_{R}<$ Table value, then we accept null hypothesis.
There is no significance difference between the rows.
2. Four varieties $\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ of a fertilizer are tested in a randomized block design with four replication. The plot yields in pounds as follows.

A 12	D 20	C 16	B 10
D 18	A 14	B 11	C 14
B 12	C 15	D 19	A 13
C 16	B 11	A 15	D 20

Analysis the experimental yield.

Solution:

Set the null hypothesis H_{0} : There is no significance difference between the rows and columns.

Varieties	Yields				
	1	2	3	4	Total
A	12	14	15	13	54
B	12	11	11	10	44
C	16	15	16	14	61

D	18	20	19	20	77
Total	58	60	61	57	$236(\mathrm{~T})$

TEST STATISTIC:

Varieties		1	2	3	4	Total	$X_{1}{ }^{2}$	$X_{2}{ }^{2}$	$X_{3}{ }^{2}$	$X_{4}{ }^{2}$
		X_{1}	X_{2}	X_{3}	X_{4}					
Y_{1}	A	12	14	15	13	54	144	196	225	169
Y_{2}	B	12	11	11	10	44	144	121	121	100
Y_{3}	C	16	15	16	14	61	256	225	256	196
Y_{4}	D	18	20	19	20	77	324	400	361	400
Total		58	60	61	57	236	868	942	963	865

Step:1 Grand Total T = 236
Step: 2 Correction Factor C . F $=\frac{T^{2}}{N}=\frac{(236)^{2}}{16}=3481$
Step: 3 Calculate the total sum of squares and find the total sum of squares

$$
\begin{aligned}
\mathrm{TSS} & =\left(\sum X_{1}^{2}+\sum X_{2}{ }^{2}+\sum X_{3}^{2}+\ldots\right)-C . F \\
& =(868+942+963+865)-3481 \\
& =3638-3481=157
\end{aligned}
$$

Step: 4 Find column sum of squares $\mathrm{SSC}=\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-$ C.F

$$
\begin{aligned}
& \operatorname{SSC}=\left(\frac{(58)^{2}}{4}\right.\left.+\frac{(60)^{2}}{4}+\frac{(61)^{2}}{4}+\frac{(57)^{2}}{4}\right)-3481 \\
& \quad=841+900+930+812-3481=2
\end{aligned}
$$

Step: 5 Find Row sum of squares $\operatorname{SSR}=\left(\frac{\left(\sum Y_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum Y\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F$

$$
\begin{aligned}
\mathrm{SSR} & =\left(\frac{(54)^{2}}{4}+\frac{(44)^{2}}{4}+\frac{(61)^{2}}{4}+\frac{(77)^{2}}{4}\right)-3481 \\
& =729+484+930.25+1482.25-3481=144.5
\end{aligned}
$$

Step: $6 \mathrm{SSE}=$ Residual sum of squares

$$
\begin{aligned}
& =\mathrm{TSS}-(\mathrm{SSC}+\mathrm{SSR}) \\
& =157-(2+144.5)=10.5
\end{aligned}
$$

Step: 7 Prepare the ANOVA to calculate F - ratio

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio		
Between Columns	SSC $=2$	$\mathrm{c}-1$ $=4-1=3$	$\mathrm{MSC}=\frac{S S C}{c-1}$ $=0.666$	$F_{c}=\frac{M S E}{M S C}=1.74$		
Between Rows	SSR $=144.5$	$\mathrm{r}-1$ $=4-1=3$	$\mathrm{MSR}=\frac{S S R}{r-1}=$ 48.16	$F_{R}=\frac{M S R}{M S E}=41.51$		
Error	$\mathrm{SSE}=10.5$	$(\mathrm{r}-1)(\mathrm{c}-1)$ $=3 \times 3=9$	$\mathrm{MSE}=$ $(\mathrm{r}-1)(\mathrm{c}-1)$			
1.6					\quad	
:---						

Step: 8 d.f for $(9,3)$ at 5% level of significance is 8.82
d.f for $(3,9)$ at 5% level of significance is 3.86

Step: 9 Conclusion:
Calculated value $F_{c}<$ Table value, then we accept null hypothesis.
There is no significance difference between the columns.
Calculated value $F_{R}>$ Table value, then we reject null hypothesis.
There is a significance difference between the rows.

LATIN SQUARE:

Steps in constructing Latin Square

Step: 1

Square the Grand total (T) and divide it by the number of observations (N).
i.e), Find $\frac{T^{2}}{N}$ which is called the correction factor (C.F)

Step:2

Add the squares of the individual observations $\left(X_{i}{ }^{\prime} s\right)$ and substract the C.F from it to get the total sum of squares. i.e)., Find Total sum of squares TSS

$$
\text { i.e)., } \operatorname{TSS}=\sum_{i}\left(X_{i}\right)^{2}-\frac{T^{2}}{N}
$$

Step: 3

Add the squares of the row sums $\left(R_{i}\right)$ divide it by the number of items in a row and substract the C.F from the result to get the row sum of squares.

Row sum of squares $S S R=\frac{\left(\sum R_{i}\right)^{2}}{n_{1}}-C . F$
Where n_{1} is the number of items in a row.

Step: 4

Add the squares of the columns sums $\left(C_{i}\right)$ divide it by the number of items and substract the C.F from the result to get the column sum of squares.

Column sum of squares $S S C=\frac{\left(\sum C_{j}\right)^{2}}{n_{2}}-C . F$
Where n_{2} is the number of items in a column.

Step:5

Sum of the squares of the treatment sums (T_{i}) divide it by the number of treatments and substract the C.F from it to get the treatment sum of squares, i.e., Treatment sum of squares.

$$
S S T=\frac{\left(\sum T_{i}\right)^{2}}{n_{i}}-C . F
$$

Where n_{i} is the number of treatments.

Step:6

Substract the sum obtained in steps 3, 4, and 5 from 2 we get residual.
i.e)., Residual $S S E=T S S-(S S R+S S C+S S T)$

Step:7

Prepare the ANOVA table using all these and calculate the various mean squares as follows.

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Rows	SSR	$\mathrm{n}-1$	MSR $=\frac{S S R}{n-1}$	$F_{R}=\frac{M S R}{M S E}$ if MSR $>$ MSE $F_{R}=\frac{M S E}{M S R}$ if MSE $>$ MSR
Between Columns	SSC	$\mathrm{n}-1$	MSC $=\frac{S S C}{n-1}$	$F_{c}=\frac{M S C}{M S E}$ if MSC $>$ MSE $F_{C}=\frac{M S E}{M S C}$ if MSE $>$ MSC

Treatments	SST	$\mathrm{n}-1$	MST $=\frac{S S T}{n-1}$	$F_{T}=\frac{M S T}{M S E}$ if MST $>$ MSE $F_{T}=\frac{M S E}{M S T}$ if MSE $>$ MST
Residual or Error	SSE	$(\mathrm{n}-1)(\mathrm{n}-2)$	$\frac{\mathrm{MSE}=}{(\mathrm{SSE}}$	

Step:8

Compute the F-ratio and find out whether the differences are significant or not according to the given level of significance.

1. Set up the analysis of variance for the following results of a Latin square design.

A	C	B	D
$\mathbf{1 2}$	19	10	$\mathbf{8}$
C	B	D	A
$\mathbf{1 8}$	12	$\mathbf{6}$	7
B	D	A	C
22	10	5	21
C	A	C	B
$\mathbf{1 2}$	7	27	17

Solution:
Set the null hypothesis H_{0} : There is no significance difference between the rows, columns and treatments.

Table I (To find TSS, SSR and SSC)

	C_{1}	C_{2}	C_{3}	C_{4}	Row Total R_{i}	$R_{i}{ }^{2} / 4$
R_{1}	12	19	10	8	49	600.25
R_{2}	18	12	6	7	43	462.25
R_{3}	22	10	5	21	58	841
R_{4}	12	7	27	17	63	992.25
Column Total	64	48	48	53	$213(\mathrm{~T})$	2895.75

C_{j}						$\sum R_{i}{ }^{2} / 4$
$C_{j}^{2} / 4$	1024	576	576	702.25	2895.75	
					$\sum C_{j}^{2} / 4$	

Table II (To find SST)

	1	2	3	4	Row Total T_{i}	$T_{i}^{2} / 4$
A	12	7	5	7	31	240.25
B	10	12	22	17	61	930.25
C	19	18	21	27	85	1806.25
D	8	6	10	12	36	324
$3300.75=$ $T_{i}{ }^{2} / 4$						

Step:1

Grand total $(\mathbf{T})=213$

Step:2
Correction factor (C.F) $=\frac{T^{2}}{N}=\frac{(213)^{2}}{16}=2835.56$

Step:3

Sum of squares of individual observations

$$
\begin{gathered}
=(12)^{2}+(7)^{2}+(5)^{2}+(7)^{2}+(10)^{2}+(12)^{2}+(22)^{2}+(17)^{2}+ \\
(19)^{2}+(18)^{2}+(21)^{2}+(27)^{2}+(8)^{2}+(6)^{2}+(10)^{2}+(12)^{2} \\
=3483
\end{gathered}
$$

Step: 4
TSS =sum of squares of individual observations $-C . F$

$$
=\sum_{i}\left(X_{i}\right)^{2}-\frac{T^{2}}{N}=3486-2835.56=647.44
$$

Step:5

Row sum of squares $S S R=\frac{\left(\Sigma R_{i}\right)^{2}}{4}-C . F=2895.75-2835.56=60.19$

Step:6

Column sum of squares $S S C=\frac{\left(\Sigma C_{j}\right)^{2}}{4}-C . F=2878.25-2835.56$

$$
=42.69
$$

Step:7

Sum of squares of Treatment

$$
S S T=\frac{\left(\sum T_{i}\right)^{2}}{n_{i}}-C . F=3300.75-2835.56=465.19
$$

Step:8

$$
\begin{aligned}
& \text { Residual } S S E=T S S-(S S R+S S C+S S T) \\
& \quad=647.44-(60.19+42.69+465.19)=79.37
\end{aligned}
$$

Step:9

Prepare the ANOVA table using all these and calculate the various mean squares as follows.

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Rows	$\mathrm{SSR}=60.19$	$4-1=3$	$\mathrm{MSR}=\frac{S S R}{n-1}$ $=20.06$	$F_{R}=\frac{M S R}{M S E}=1.52$
Between Columns	$\mathrm{SSC}=42.69$	$4-1=3$	$\mathrm{MSC}=\frac{S S C}{n-1}$ $=14.23$	$F_{c}=\frac{M S C}{M S E}=1.08$
Treatments	$\mathrm{SST}=465.19$	$4-1=3$	$\mathrm{MST}=\frac{S S T}{n-1}$ $=155.06$	$F_{T}=\frac{M S T}{M S E}=11.73$
Residual or Error	$\mathrm{SSE}=79.37$	$(4-1)(4-2)$ $=6$	$\mathrm{MSE}=$ $\frac{S S E}{(\mathrm{n}-1)(\mathrm{n}-2)}$ $=13.22$	

Step: 10 d.f for $(3,6)$ at 5% level of significance is 4.76
Step: 9 Conclusion:
Calculated value $F_{c}<$ Table value, then we accept null hypothesis.
There is no significance difference between the columns.
Calculated value $F_{R}<$ Table value, then we accept null hypothesis.

There is no significance difference between the rows.
Calculated value $F_{T}>$ Table value, then we reject null hypothesis.
There is a significance difference between the rows.

