4.1 Semigroups and Monoids

Define Algebraic System:

A non – empty set G together with one or more n – ary operations say *
(binary) is called an Algebraic System or Algebraic Structure or Algebra.

G.

- We denoted it by [G, *].
- Note: $+, -, \cdot, \times, *, \cup, \cap$ etc are some of binary operations.

Properties of Binary Operations

Let the binary operation be $*: G \times G \rightarrow$

Then we have the following properties:

Closure Property:

 $a * b = x \epsilon G$, for all $a, b \epsilon G$.

Commutativity Property: 44 ROLAM, KANYAKU

a * b = b * a, for all $a, b \in G$.

Associativity:

OBSERVE OPTIMIZE OUTSPREA

$$(a * b) * c = a * (b * c)$$
, for all a, b, c ε G.

Identity Element:

a * e = e * a = a, for all $a \in G$.

'e' is called the identity element.

Inverse Element:

If a * b = b * a = e (identity), then b is called the inverse of a and it is

denoted by $b = a^{-1}$.

Left Cancellation law:

 $a * b = a * c \Rightarrow b = c$

Right Cancellation law:

$$b * a = c * a \Rightarrow b = c$$

If the binary operation defined on G is + and X, then we have the following table.

신목:

For all a, b, c E	(G, +)	(G,×)
G		\$\$ }
Commutativity	a+b=b+a	$a \times b = b \times a$
Associativity	(a + b) + c = a + (b + c)	$(a \times b) \times c = a \times (b \times c)$
Identity element	a + 0 = 0 + a = a OBS $(0 \rightarrow identity)$ PTIMIZE 0	$a \times 1 = 1 \times a = a$ (1 \rightarrow identity)
Inverse element	a + (-a) = 0	$a \times \frac{1}{a} = \frac{1}{a} \times a = 1$
	(-a→ additive inverse)	$(\frac{1}{a} \rightarrow \text{multiplicative})$
		inverse)

NOTATIONS:

- Z the set of all integers.
- Q the set of all rational numbers.
- R the set of all real numbers.
- C the set of all complex numbers.
- R^+ the set of all positive real numbers.
- Q^+ the set of all positive rational numbers.

Semigroups and Monoids:

Define semigroup

If a non – empty set S together with the binary operation * satisfying the following

properties

Closure Property:

LKULAM, KANYAKU a * b = b * a, for all $a, b \in S$.

Associativity:

BSERVE OPTIMIZE OUTSPRE

$$(a * b) * c = a * (b * c), \text{ for all } a, b, c \in S.$$

Then (S,*) is called a semigroup.

Monoid:

A semigroup (S,*) with an identity element with respect to * is called Monoid. It is denoted by (M,*).

In other words, a non – empty set 'M' with respect to * is said to be a monoid, if *

satisfies the following properties

For $a, b \in M$

Closure Property:

$$a * b = b * a$$
, for all a, b ε M.

Associativity:

$$(a * b) * c = a * (b * c)$$
, for all a, b, c ε M.

Identity Element:

$$a * e = e * a = a$$
, for all a ε M

'e' is called the identity element.

OBSERVE OPTIMIZE OUTSPREAD

PALKULAM, KANYA