4.1 Semigroups and Monoids

Define Algebraic System:

- A non - empty set G together with one or more n - ary operations say * (binary) is called an Algebraic System or Algebraic Structure or Algebra.
- We denoted it by $[G, *]$.
- Note: $+,-,, x, *, \cup, \cap$ etc are some of binary operations.

Properties of Binary Operations

Let the binary operation be $*: G \times G \rightarrow G$.
Then we have the following properties:

Closure Property:

$\mathrm{a} * \mathrm{~b}=x \in \mathrm{G}$, for all $a, b \varepsilon G$.

Commutativity Property:

$$
a * b=b * a \text {, for all } a, b \varepsilon G \text {. }
$$

Associativity:

SGEVE OPTMFIG OUTSPRERD

$$
(a * b) * c=a *(b * c), \text { for all } a, b, c \in G .
$$

Identity Element:

$$
a * e=e * a=a \text {, for all } a \varepsilon G .
$$

' e ' is called the identity element.

Inverse Element:

If $a * b=b * a=e$ (identity), then b is called the inverse of a and it is denoted by $\mathrm{b}=a^{-1}$.

Left Cancellation law:

$a * b=a * c \Rightarrow b=c$

Right Cancellation law:

$$
b * a=c * a \Rightarrow b=c
$$

If the binary operation defined on G is + and X, then we have the following table.

For all $\mathbf{a}, \mathrm{b}, \mathbf{c} \boldsymbol{\varepsilon}$	$(\mathbf{G},+)$	(\mathbf{G}, \times)
G	$\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$	$\mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$
Commutativity	$(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$	$(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}=\mathrm{a} \times(\mathrm{b} \times \mathrm{c})$
Associativity	$\mathrm{a}+0=0+\mathrm{a}=\mathrm{a}$	$\mathrm{a} \times 1=1 \times \mathrm{a}=\mathrm{a}$
Identity element	$(0 \rightarrow$ identity $)$	$(1 \rightarrow \mathrm{identity)}$
Inverse element	$\mathrm{a}+(-\mathrm{a})=0$	$\mathrm{a} \times \frac{1}{a}=\frac{1}{a} \times \mathrm{a}=1$

NOTATIONS:

- Z - the set of all integers.
- Q - the set of all rational numbers.
- R - the set of all real numbers.
- C - the set of all complex numbers.
- R^{+}- the set of all positive real numbers.
- Q^{+}- the set of all positive rational numbers.

Semigroups and Monoids:

Define semigroup
If a non - empty set S together with the binary operation $*$ satisfying the following properties

Closure Property:

$a * b=b * a$, for all $a, b \varepsilon S$.

Associativity:

$$
(a * b) * c=a *(b * c), \text { for all } a, b, c \varepsilon S .
$$

Then $(S, *)$ is called a semigroup.

Monoid:

A semigroup $(S, *)$ with an identity element with respect to $*$ is called Monoid. It is denoted by $(M, *)$.

In other words, a non - empty set ' M ' with respect to $*$ is said to be a monoid, if * satisfies the following properties

For $a, b \in M$

Closure Property:

$a * b=b * a$, for all $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{M}$.

Associativity:

$$
(a * b) * c=a *(b * c) \text {, for all } \mathrm{a}, \mathrm{~b}, \mathrm{c} \varepsilon \mathrm{M} \text {. }
$$

Identity Element:

$$
a * e=e * a=a \text {, for all a } \varepsilon \mathrm{M} \text {. }
$$

' e ' is called the identity element.

