DISCRETE FOURIER TRANSFORM

The discrete Fourier transform converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform, which is a complex-valued function of frequency.

The N point DFT of $x(n)$ can be expressed as

$$
\mathrm{X}(\mathrm{~K})=\sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{x}(\mathrm{n}) \mathrm{e}^{\frac{-\mathrm{j} 2 \pi \mathrm{kn}}{\mathrm{~N}}}
$$

For $\mathrm{k}=0,1,2 \ldots \mathrm{~N}-1$

Example-1

Compute the DFT of the sequence is given by

$$
x(n)=\{0,1,2,1\}
$$

Soln:

$$
X(K)=\sum_{n=0}^{N-1} x(n) e^{\frac{-j 2 \pi k n}{N}}
$$

The given signal $x(n)$ is 4 point signal. Let us compute 4 point DFT.

$$
\begin{aligned}
& \mathrm{X}(\mathrm{~K})=\sum_{\mathrm{n}=0}^{4-1} \mathrm{x}(\mathrm{n}) \mathrm{e}^{\frac{-\mathrm{j} 2 \pi \mathrm{kn}}{4}} \\
& =\sum_{\mathrm{n}=0}^{3} \mathrm{x}(\mathrm{n}) \mathrm{e}^{\frac{-\mathrm{j} \pi \mathrm{kn}}{2}} \\
& =\mathrm{x}(0) e^{0}+\mathrm{x}(1) e^{\frac{-j \pi k}{2}}+\mathrm{x}(2) e^{-j \pi k}+\mathrm{x}(3) e^{\frac{-\mathrm{j} \pi \pi k}{2}} \\
& =0+e^{\frac{-j \pi k}{2}}+2 e^{-j \pi k}+e^{\frac{-j s \pi k}{2}} \\
& =\cos \frac{\pi k}{2}-\mathrm{j} \sin \frac{\pi k}{2}+2(\cos \pi \mathrm{k}-\mathrm{j} \sin \pi \mathrm{k})+\cos \frac{3 \pi k}{2}-\mathrm{j} \sin \frac{3 \pi k}{2} \\
& =\left(\cos \frac{\pi k}{2}+2 \cos \pi \mathrm{k}+\cos \frac{3 \pi k}{2}\right)-\mathrm{j}\left(\sin \frac{\pi k}{2}+\sin \frac{3 \pi k}{2}\right) \\
& \mathrm{K}=0,1,2,3
\end{aligned}
$$

When $\mathrm{k}=0$;
$\mathrm{X}(0)=(\cos 0+2 \cos 0+\cos 0)-j(\sin 0+\sin 0)$
$=(1+2+1)-\mathrm{j}(0+0)=4$

When $\mathrm{k}=1$

$\mathrm{X}(1)=\left(\cos \frac{\pi}{2}+2 \cos \pi+\cos \frac{3 \pi}{2}\right)-j\left(\sin \frac{\pi}{2}+\sin \frac{3 \pi}{2}\right)$
$=(0-2+0)-\mathrm{j}(1-1)=-2$
When $\mathrm{k}=2$
$\mathrm{X}(2)=(\cos \pi+2 \cos 2 \pi+\cos 3 \pi)-j(\sin \pi+\sin 3 \pi)$

$$
\begin{aligned}
& =(-1+2-1)-j(0+0) \\
& =0
\end{aligned}
$$

When $\mathrm{k}=3$

$$
\begin{aligned}
& \mathrm{X}(3)=\left(\cos \frac{3 \pi}{2}+2 \cos 3 \pi+\cos \frac{9 \pi}{2}\right)-j\left(\sin \frac{3 \pi}{2}+\sin \frac{9 \pi}{2}\right) \\
& =(0-2+0)-\mathrm{j}(-1+1)=-2
\end{aligned}
$$

Answer:

$$
X(0)=4, X(1)=2, X(2)=0, X(3)=-2
$$

PROBLEMS:

1. Determine the 4 -point DFT of the sequence $x(n)=(1,0,1,0)$

DFT of the sequence is defined as

$$
X(k)=\sum_{n=o}^{N-1} x(n) e^{-j 2 \pi \frac{k}{N}} k=0,1, \ldots(N-1)
$$

$N=4$

$$
\begin{aligned}
& X(k)=\sum_{n=0}^{3} x(n) e^{-j 2 \pi \frac{k n}{4}}=\sum_{n=0}^{3} x(n) e^{-j \pi \frac{k n}{2}} \\
& X(k)=x(0) e^{0}+x(1) e^{-j \pi \frac{k}{2}}+x(2) e^{-j \pi k}+x(3) e^{-j \frac{3 \pi k}{2}}
\end{aligned}
$$

Substitute $x(0), x(1), x(2)$ and $x(3)$ values

$$
\begin{aligned}
& =1+0+1 e^{-j \pi k}+0 \\
X(k) & =1+e^{-j \pi k}
\end{aligned}
$$

Sub $k=0$ in equation(1)

$$
X(0)=1+e^{-j \pi(0)}=1+1=2
$$

Sub $k=0$ in equation(1)

$$
\begin{aligned}
X(1) & =1+e^{-j \pi}=1+\cos \pi-j \sin \pi \\
& =1-1-j(0)=0
\end{aligned}
$$

Sub $k=2$ in equation(1)

$$
\begin{aligned}
X(2) & =1+e^{-j 2 \pi}=1+\cos 2 \pi-j \sin 2 \pi \\
& =1+1-j(0)=2
\end{aligned}
$$

Sub $k=3$ in equation(1)

$$
\begin{aligned}
X(3) & =1+e^{-j 3 \pi}=1+\cos 3 \pi-j \sin 3 \pi \\
& =1+[-1-j(0)]=1-1=0
\end{aligned}
$$

The output sequence is $\mathrm{X}(\mathrm{k})=\{2,0,2,0\}$
2. Find the 4-point DFT of the sequence $x(n)=[1,1,-1,-1]$.(MAY/JUNE 2013)
$\mathrm{X}_{\mathrm{N}}=\left[\mathrm{W}_{\mathrm{N}}\right] \mathrm{x}_{\mathrm{N}}$
$\mathrm{N}=4$

$$
\mathrm{X}_{4}=\left[\mathrm{W}_{4}\right] \mathrm{x}_{4}
$$

$$
\mathrm{W}_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1+1-1-1 \\
1-j+1-j \\
1-1-1+1 \\
1+j+1+j
\end{array}\right]
$$

$$
\mathrm{X}_{4}=\left[\begin{array}{c}
0 \\
2-2 j \\
0 \\
2+2 j
\end{array}\right]
$$

3. Find the 4-point DFT of $x(n)=\{1,-1,2,-2\}$ directly.

SOLN:

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{N-1} x(n) W_{N}^{n t}=\sum_{n=0}^{N-1} x(n) e^{-j(2 x / N) n k}=\sum_{n=0}^{3} x(n) e^{-j(n / 2 n k t}, k=0,1,2,3 \\
X(0) & =\sum_{n=0}^{3} x(n) e^{0}=x(0)+x(1)+x(2)+x(3)=1-1+2-2=0 \\
X(1) & =\sum_{n=0}^{3} x(n) e^{-j(\pi / 2) n}=x(0)+x(1) e^{-(j \pi / 2)}+x(2) e^{-j \pi}+x(3) e^{-j(3 n / 2)} \\
& =1+(-1)(0-j)+2(-1-j 0)-2(0+j) \\
& =-1-j \\
X(2) & =\sum_{n=0}^{3} x(n) e^{-j \pi n}=x(0)+x(1) e^{-j \pi}+x(2) e^{-j 2 \pi}+x(3) e^{-j 3 x} \\
& =1-1(-1-j 0)+2(1-j 0)-2(-1-j 0)=6
\end{aligned} \quad \begin{aligned}
X(3) & =\sum_{n=0}^{3} x(n) e^{-j(3 \pi / 2) n}=x(0)+x(1) e^{-j(3 \pi / 2)}+x(2) e^{-j 3 \pi}+x(3) e^{-j(0 \pi / 2)} \\
& =1-1(0+j)+2(-1-j 0)-2(0-j)=-1+j \\
X(k) & =[0,-1-j, 6,-1+j]
\end{aligned}
$$

4. Compute the DFT of the 3-point sequence $x(n)=\{2,1,2\}$. Using the same sequence, compute the 6 -point DFT and compare the two DFTs.

Solution: The given 3 -point sequence is $x(n)=[2,1,2], N=3$.

$$
\begin{aligned}
\text { DFT } x(n) & =X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}=\sum_{n=0}^{2} x(n) e^{-j(2 x / 3) m t}, k=0,1,2 \\
& =x(0)+x(1) e^{-j(2 \pi / n) t}+x(2) e^{-j(4 \pi / 3) t} \\
& =2+\left(\cos \frac{2 \pi}{3} k-j \sin \frac{2 \pi}{3} k\right)+2\left(\cos \frac{4 \pi}{3} k-j \sin \frac{4 \pi}{3} k\right)
\end{aligned}
$$

When $k=0, \quad X(k)=X(0)=2+1+2=5$
When $k=1, \quad X(k)=X(1)=2+\left(\cos \frac{2 \pi}{3}-j \sin \frac{2 \pi}{3}\right)+2\left(\cos \frac{4 \pi}{3}-j \sin \frac{4 \pi}{3}\right)$
$=2+(-0.5-j 0.866)+2(-0.5+j 0.866)$
$=0.5+j 0.866$
When $k=2, \quad X(k)=X(2)=2+\left(\cos \frac{4 \pi}{3}-j \sin \frac{4 \pi}{3}\right)+2\left(\cos \frac{8 \pi}{3}-j \sin \frac{8 \pi}{3}\right)$

$$
\begin{aligned}
& =2+(-0.5+j 0.866)+2(-0.5-j 0.866) \\
& =0.5-j 0.866
\end{aligned}
$$

$\therefore \quad$ 3-point DFT of $x(n)=X(k)=\{5.0 .5+j 0.866,0.5-j 0.866\}$
To compute the 6-point DFT, convert the 3-point sequence $x(n)$ into 6 -point sequence by padding with zeros.

$$
x(n)=\{2,1,2,0,0,0\}, \quad N=6
$$

$$
\begin{aligned}
\operatorname{DFT}\{x(n)\}= & X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}=\sum_{n=0}^{5} x(n) e^{-j(2 \pi /(N) n k}, \quad k=0,1,2,3,4,5 \\
= & x(0)+x(1) e^{-j(2 \pi / 6) k}+x(2) e^{-j(4 \pi / 6) k}+x(3) e^{-j(6 \pi / 6) k}+x(4) e^{-j((8 \pi / 6) k} \\
& +x(5) e^{-j(10 \pi / 6) k} \\
= & 2+e^{-j(\pi / 3) k}+2 e^{-j(2 \pi / 3) k}
\end{aligned}
$$

When $k=0 . \quad X(0)=2+1+2=5$

When $k=1, \quad X(1)=2+e^{-j(\pi / 3)}+2 e^{-j(2 \pi / 3)}$

$$
=2+(0.5-j 0.866)+2(-0.5-j 0.866)=1.5-j 2.598
$$

When $k=2, \quad X(2)=2+e^{-j(2 \pi / 3)}+2 e^{-j(4 \pi / 3)}$

$$
=2+(-0.5-j 0.866)+2(-0.5+j 0.866)=0.5+j 0.866
$$

When $k=3, \quad X(3)=x(0)+x(1) e^{-j(3 \pi / 3)}+x(2) e^{-j(6 \pi / 3)}$

$$
\begin{aligned}
& =2+(\cos \pi-j \sin \pi)+2(\cos 2 \pi-j \sin 2 \pi) \\
& =2-1+2=3
\end{aligned}
$$

When $k=4, \quad X(4)=x(0)+x(1) e^{-j(4 \pi / 3)}+x(2) e^{-j(k s(3)}$

$$
\begin{aligned}
& =2+\left(\cos \frac{4 \pi}{3}-j \sin \frac{4 \pi}{3}\right)+2\left(\cos \frac{8 \pi}{3}-j \sin \frac{8 \pi}{3}\right) \\
& =2+(-0.5+j 0.866)+2(-0.5-j 0.866) \\
& =0.5-j 0.866
\end{aligned}
$$

When $k=5$,

$$
\begin{aligned}
X(5) & =x(0)+x(1) e^{-j(5 \pi / 3)}+x(2) e^{-f(00 \pi / 3)} \\
& =2+\left(\cos \frac{5 \pi}{3}-j \sin \frac{5 \pi}{3}\right)+2\left(\cos \frac{10 \pi}{3}-j \sin \frac{10 \pi}{3}\right) \\
& =2+(0.5-j 0.866)+2(-0.5+j 0.866)=1.5+j 0.866
\end{aligned}
$$

Tabulating the above 3 -point and 6-point DFTs, we have

DFT	$X(0)$	$X(1)$	$X(2)$	$X(3)$	$X(4)$	$X(5)$
3-point	5	$0.5+j 0.866$	$0.5-j 0.866$	-	-	-
6-point	5	$1.5-j 2.598$	$0.5+j 0.866$	3	$0.5-j 0.866$	$1.5+j 0.866$

5. Find the 4-point DFT of $x(n)=\{1,-2,3,2\}$.

Soln:
Given $x(n)=\{1,-2,3,2\}$.
Here $N-4, L-4$. The DFT of $X(n)$ is $X(k)$.

$$
\begin{aligned}
& \therefore \quad X(k)-\sum_{k=0}^{N-1} x(n) W_{k^{t}}-\sum_{k=0}^{3} x(n) e^{-j(2 \pi / A) \alpha t}-\sum_{N=0}^{3} x(n) e^{-j(N / 2) n t, \quad k=0,1,2,3} \\
& x(0)=\sum_{n=0}^{1} x(n) e^{8}=x(0)+x(1)+x(2)+x(3)=1-2+3+2=4 \\
& X(1)=\sum_{==0}^{3} x(n) e^{-j(n / 2 n}=x(0)+x(1) e^{-j(n / 2)}+x(2) e^{-j x}+x(3) e^{-j(0 n / 2)} \\
& =1-2(0-j)+3(-1-j 0)+2(0+j)=-2+j 4 \\
& x_{(2)}=\sum_{\text {en }}^{3} x(n) e^{-j \pi}=x(0)+x(1) e^{-j \pi}+x(2) e^{-j 2 \pi}+x(3) e^{-\gamma 3 \pi} \\
& =1-2(-1-j 0)+3(1-j 0)+2(-1-j 0)=4 \\
& x(3)-\sum_{n=0}^{3} x(n) e^{-\pi x / 2 w}-x(0)+x(1) e^{-\mu(3 n / 2)}+x(2) e^{-\beta 3 x}+x(3) e^{-j(9 \pi / 2)} \\
& =1-2(0+j)+3(-1-j 0)+2(0-f)=-2-f 4 \\
& \therefore \quad X(k)=(4,-2+/ 4,4,-2-j 4)
\end{aligned}
$$

