
 Rohini College of Engineering & Technology

 AD3251 Data Structure Design

Doubly Linked List

Doubly linked list is a complex type of linked list in which a node contains a pointer to the previous

as well as the next node in the sequence. Therefore, in a doubly linked list, a node consists of three

parts: node data, pointer to the next node in sequence (next pointer) , pointer to the previous node

(previous pointer). A sample node in a doubly linked list is shown in the figure.

A doubly linked list containing three nodes having numbers from 1 to 3 in their data part, is shown

in the following image.

Doubly linked list can be given as :

1. struct node

2. {

3. struct node *prev;

4. int data;

 Rohini College of Engineering & Technology

 AD3251 Data Structure Design

5. struct node *next;

6. }

Memory Representation of a doubly linked list

Memory Representation of a doubly linked list is shown in the following image. Generally, doubly

linked list consumes more space for every node and therefore, causes more expansive basic

operations such as insertion and deletion. However, we can easily manipulate the elements of the

list since the list maintains pointers in both the directions (forward and backward).

In the following image, the first element of the list that is i.e. 13 stored at address 1. The head

pointer points to the starting address 1. Since this is the first element being added to the list

therefore the prev of the list contains null. The next node of the list resides at address 4 therefore

the first node contains 4 in its next pointer.

We can traverse the list in this way until we find any node containing null or -1 in its next part.

 Rohini College of Engineering & Technology

 AD3251 Data Structure Design

Operations on doubly linked list

Node Creation

1. struct node

2. {

3. struct node *prev;

4. int data;

5. struct node *next;

6. };

7. struct node *head;

All the remaining operations regarding doubly linked list are described in the following table.

SN Operation Description

1 Insertion at beginning Adding the node into the linked list at beginning.

2 Insertion at end Adding the node into the linked list to the end.

3 Insertion after specified

node

Adding the node into the linked list after the specified node.

4 Deletion at beginning Removing the node from beginning of the list

5 Deletion at the end Removing the node from end of the list.

6 Deletion of the node

having given data

Removing the node which is present just after the node containing the

given data.

7 Searching Comparing each node data with the item to be searched and return the

location of the item in the list if the item found else return null.

8 Traversing Visiting each node of the list at least once in order to perform some

specific operation like searching, sorting, display, etc.

https://www.javatpoint.com/insertion-in-doubly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-doubly-linked-list-at-the-end
https://www.javatpoint.com/insertion-in-doubly-linked-list-after-specified-node
https://www.javatpoint.com/insertion-in-doubly-linked-list-after-specified-node
https://www.javatpoint.com/deletion-in-doubly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-doubly-linked-list-at-the-end
https://www.javatpoint.com/deletion-in-doubly-linked-list-after-the-specified-node
https://www.javatpoint.com/deletion-in-doubly-linked-list-after-the-specified-node
https://www.javatpoint.com/searching-in-doubly-linked-list
https://www.javatpoint.com/traversing-in-doubly-linked-list

 Rohini College of Engineering & Technology

 AD3251 Data Structure Design

