
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4202- ADVANCED DATABASE DESIGNS 

 

UNIT II SPATIAL AND TEMPORAL DATABASES 9 

Active Databases Model – Design and Implementation Issues - Temporal Databases 

- Temporal Querying - Spatial Databases: Spatial Data Types, Spatial Operators and 

Queries – Spatial Indexing and Mining – Applications -– Mobile Databases: Location and 

Handoff Management, Mobile Transaction Models – Deductive Databases - Multimedia 

Databases. 

 
TEMPORAL DATABASES 

A Temporal Database is a database with built-in support for handling time sensitive 

data. Usually, databases store information only about the current state, and not about past 

states. For example, in an employee database if the address or salary of a particular person 

changes, the database gets updated, the old value is no longer there. However for many 

applications, it is important to maintain the past or historical values and the time at which 

the data was updated. That is, the knowledge of evolution is required. That is where 

temporal databases are useful. It stores information about the past, present and future. Any 

data that is time dependent is called the temporal data and these are stored in temporal 

databases. 

Temporal Databases store information about states of the real world across time. 

Temporal Database is a database with built-in support for handling data involving time. It 

stores information relating to past, present and future time of all events. 

 

Examples Of Temporal Databases 

● Healthcare Systems: Doctors need the patients’ health history for proper diagnosis. 

Information like the time a vaccination was given or the exact time when fever goes 

high etc. 

● Insurance Systems: Information about claims, accident history, time when policies 

are in effect needs to be maintained. 

● Reservation Systems: Date and time of all reservations is important. 

Temporal Aspects 

There are two different aspects of time in temporal databases. 

● Valid Time: Time period during which a fact is true in real world, provided to the 

system. 

● Transaction Time: Time period during which a fact is stored in the database, based on 

transaction serialization order and is the timestamp generated automatically by the 

system. 

Temporal Relation 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4202- ADVANCED DATABASE DESIGNS 

 

Temporal Relation is one where each tuple has associated time; either valid time or 

transaction time or both associated with it. 

● Uni-Temporal Relations: Has one axis of time, either Valid Time or Transaction 

Time. 

● Bi-Temporal Relations: Has both axis of time – Valid time and Transaction time. It 

includes Valid Start Time, Valid End Time, Transaction Start Time, Transaction End 

Time. 

Valid Time Example 

Now let’s see an example of a person, John: 

● John was born on April 3, 1992 in Chennai. 

● His father registered his birth after three days on April 6, 1992. 

● John did his entire schooling and college in Chennai. 

● He got a job in Mumbai and shifted to Mumbai on June 21, 2015. 

● He registered his change of address only on Jan 10, 2016. 

 

John’s Data In Non-Temporal Database 

In a non-temporal database, John’s address is entered as Chennai from 1992. When 

he registers his new address in 2016, the database gets updated and the address field now 

shows his Mumbai address. The previous Chennai address details will not be available. So, 

it will be difficult to find out exactly when he was living in Chennai and when he moved 

to Mumbai. 

 

 
Uni-Temporal Relation (Adding Valid Time To John’s Data) 

To make the above example a temporal database, we’ll be adding the time aspect 

also to the database. First let’s add the valid time which is the time for which a fact is true 

in real world. Valid time is the time for which a fact is true in the real world. A valid time 

period may be in the past, span the current time, or occur in the future. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4202- ADVANCED DATABASE DESIGNS 

 

The valid time temporal database contents look like this: 

Name, City, Valid From, Valid Till  

In our example, John was born on 3rd April 1992. Even though his father registered 

his birth three days later, the valid time entry would be 3rd April of 1992. There are two 

entries for the valid time. The Valid Start Time and the Valid End Time. So in this case 3rd 

April 1992 is the valid start time. Since we do not know the valid end time we add it as 

infinity.  

Johns father registers his birth on 6th April 1992, a new database entry is made: 

Person(John, Chennai, 3-Apr-1992, ∞). 

Similarly John changes his address to Mumbai on 10th Jan 2016. However, he has 

been living in Mumbai from 21st June of the previous year. So his valid time entry would 

be 21 June 2015.  

On January 10, 2016 John reports his new address in Mumbai: Person(John, 

Mumbai, 21-June-2015, ∞). 

The original entry is updated. 

The table will look something like this with two additional entries: 

Name  City  Valid From  Valid Till  

John  Chennai  April 3, 1992  June 20, 2015  

John  Mumbai  June 21, 2015  ∞ 

Table:Uni-temporal Database 

Bi-Temporal Relation (John’s Data Using Both Valid And Transaction Time) 

Next we’ll see a bi-temporal database which includes both the valid time and 

transaction time. Transaction time records the time period during which a database entry is 

made. So, now the database will have four additional entries: the valid from, valid till, 

transaction entered and transaction superseded. 

The database contents look like this: 

Name, City, Valid From, Valid Till, Entered, Superseded 

First, when John’s father records his birth the valid start time would be 3rd April 

1992, his actual birth date. However, the transaction entered time would be 6th April 1992. 

Johns father registers his birth on 6th April 1992: 

Person(John, Chennai, 3-Apr-1992, ∞, 6-Apr-1992, ∞). 

Similarly, when John registers his change of address in Mumbai, a new entry is 

made. The valid from time for this entry is 21st June 2015, the actual date from which he 

started living in Mumbai. whereas the transaction entered time would be 10th January 

2016. We do not know how long he’ll be living in Mumbai. So the transaction end time 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4202- ADVANCED DATABASE DESIGNS 

 

and the valid end time would be infinity. At the same time the original entry is updated 

with the valid till time and the transaction superseded time. 

On January 10, 2016 John reports his new address in Mumbai: 

Person(John, Mumbai, 21-June-2015, ∞, 10-Jan-2016, ∞). 

The original entry is updated. 

Person(John, Chennai, 3-Apr-1992, 20-June-2015, 6-Apr-1992, 10-Jan-2016). 

Now the database looks something like this:  

 

Name  City  Valid 

From  

Valid Till  Entered  Superseded  

 

 

 

Name  City  Valid 

From  

Valid Till  Entered  Superseded  

John  Chennai  April 3, 

1992  

June 20, 

2015  

April 6, 

1992  

Jan 10, 2016  

John  Mumbai  June 21, 

2015  

∞  Jan 10, 

2016  

∞ 

Bi-temporal Database  

Advantages   

 The main advantages of this bi-temporal relations is that it provides historical and 

roll back  information. For example, you can get the result for a query on John’s history, 

like: Where did John  live in the year 2001?. The result for this query can be got with the 

valid time entry. The transaction  time entry is important to get the rollback information.   

● Historical Information – Valid Time.   

● Rollback Information – Transaction Time.   

 

Temporal Query 

A TemporalQuery can be used to retrieve information from a temporal-based object. 

When a temporal table is created in SQL Server, a history table is created behind the scenes. 

The main table contains the records as they exist at the current point in time and the history 

table contains all the previous versions of records. You can query the main table as normal 

or add temporal clauses to your query to find historical records. 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4202- ADVANCED DATABASE DESIGNS 

 

 
Querying Temporal Tables 

There are two main ways to query the history table. The first is looking at previous 

versions of the table by adding time-based clauses to your queries. The second is to look 

into the history table manually, which lets you see all the previous versions of records. 

 
Creating a Temporal Table 

First let’s consider a normal table that we can use as our sample main table. For this 

post, we’ll work with a basic person record: 

create table dbo.Person 

( 

[PersonId] int not null primary key clustered, 

[Name] nvarchar(max) not null, 

[Email] nvarchar(max) null, 

[Address] nvarchar(max) null, 

[PhoneNumber] nvarchar(max) null 

) 

That table is not temporal, but having the normal definition to compare it to will 

highlight what we need to make it temporal: 

create table dbo.Person 

( 

[PersonId] int not null primary key clustered identity(1,1), 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4202- ADVANCED DATABASE DESIGNS 

 

[Name] nvarchar(max) not null, 

[Email] nvarchar(max) null, 

[Address] nvarchar(max) null, 

[PhoneNumber] nvarchar(max) null, [SysStartTime] datetime2 generated always as 

row start hidden not null, 

[SysEndTime] datetime2 generated always as row end hidden not null, 

Period for system_time (SysStartTime, SysEndTime) 

) 

with (system_versioning = on (history_table = Person_History)) 

There are two main changes. First, we added SysStartTime and SysEndTime as 

generated columns then used that to create the Period column. These are required columns 

for temporal tables. Making the start and end time columns hidden is optional, but can help 

to hide the versioning when it’s not needed. Second, we added with (system_versioning = 

on (...)) to the end of the statement. This will create the history table using the Period 

column defined above. The default naming for the history table is kind of messy, so we 

also defined what the table should be called. I like the _History suffix, so that’s what we 

will use here. 

 
 

 


