
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

1.7 Design issues and challenges

Distributed systems challenges from a system perspective

a. Communication: This task involves designing appropriate mechanisms for

communication among the processes in the network. Some example mechanisms are:

remote procedure call (RPC), remote object invocation cation (ROI), message-oriented

communication versus stream-oriented communication.

b. Processes: Some of the issues involved are: management of processes and threads at

clients/servers; code migration; and the design of software and mobile agents.

c. Naming: Devising easy to use and robust schemes for names, identifiers, and addresses is

essential for locating resources and processes in a transparent and scalable manner. Naming

in mobile systems provides additional challenges because naming cannot easily be tied to

any static geographical topology.

d. Synchronization: Mechanisms for synchronization or coordination among the processes

are essential. Mutual exclusion is the classical example of synchronization, but many other

forms of synchronization, such as leader election are also needed.

e. Data storage and access: Schemes for data storage, and implicitly for accessing the data

in a fast and scalable manner across the network are important for efficiency.

f. Consistency and replication: To avoid bottlenecks, to provide fast access to data, and to

provide scalability, replication of data objects is highly desirable.

g. Fault tolerance: Fault tolerance requires maintaining correct and efficient operation in

spite of any failures of links, nodes, and processes.

h. Security: Distributed systems security involves various aspects of cryptography, secure

channels, access control, key management – generation and distribution, authorization, and

secure group management.

i. Applications Programming Interface (API) and transparency: The API for

communication and other specialized services is important for the ease of use and wider

adoption of the distributed systems services by non-technical users.

Transparency deals with hiding the implementation policies from the user, and

can be classified as follows.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

a. Access Transparency hides differences in data representation on different systems

and provides uniform operations to access system resources.

b. Location transparency makes the locations of resources transparent to the users.

c. Migration transparency allows relocating resources without changing names.

d. The ability to relocate the resources as they are being accessed is relocation

transparency.

e. Replication transparency does not let the user become aware of any replication.

f. Concurrency transparency deals with masking the concurrent use of shared

resources for the user.

g. Failure transparency refers to the system being reliable and fault-tolerant.

j. Scalability and modularity: The algorithms, data (objects), and services must be as

distributed as possible. Various techniques such as replication, caching and cache

management, and asynchronous processing help to achieve scalability.

Algorithmic challenges in distributed computing

a. Designing useful execution models and frameworks

The interleaving model and partial order model are two widely adopted models of

distributed system executions. They have proved to be particularly useful for operational

reasoning and the design of distributed algorithms.

b. Dynamic distributed graph algorithms and distributed routing algorithms

The distributed system is modeled as a distributed graph, and the graph algorithms form

the building blocks for a large number of higher level communication, data dissemination,

object location, and object search functions.

c. Time and global state in a distributed system

The processes in the system are spread across three-dimensional physical space. Another

dimension, time, has to be superimposed uniformly across space. The challenges pertain to

providing accurate physical time, and to providing a variant of time, called logical time.

d. Synchronization/coordination mechanisms

The processes must be allowed to execute concurrently, except when they need to

synchronize to exchange information, i.e., communicate about shared data.

Synchronization is essential for the distributed processes to overcome the limited

observation of the system state from the viewpoint of any one process. Here are some

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

examples of problems requiring synchronization. They are Physical clock synchronization,

Leader election, Mutual exclusion, Deadlock detection and resolution, Termination

detection and Garbage collection.

e. Group communication, multicast, and ordered message delivery

A group is a collection of processes that share a common context and collaborate on a

common task within an application domain. Specific algorithms need to be designed to

enable efficient group communication and group management wherein processes can join

and leave groups dynamically, or even fail.

f. Monitoring distributed events and predicates

Predicates defined on program variables that are local to different processes are used for

specifying conditions on the global system state, and are useful for applications such as

debugging, sensing the environment, and in industrial process control.

g. Distributed program design and verification tools

Methodically designed and verifiably correct programs can greatly reduce the overhead of

software design, debugging, and engineering. Designing mechanisms to achieve these

design and verification goals is a challenge

h. Debugging distributed programs

Debugging sequential programs is hard; debugging distributed programs is that much

harder because of the concurrency in actions and the ensuing uncertainty due to the large

number of possible executions defined by the interleaved concurrent actions.

i. Data replication, consistency models, and caching

Fast access to data and other resources requires them to be replicated in the distributed

system. Managing such replicas in the face of updates introduces the problems of ensuring

consistency among the replicas and cached copies.

j. World Wide Web design – caching, searching, scheduling

The Web is an example of a widespread distributed system with a direct interface to the

end user, wherein the operations are predominantly read-intensive on most objects.

k. Distributed shared memory abstraction

A shared memory abstraction simplifies the task of the programmer because he or she has

to deal only with read and write operations, and no message communication primitives.

However, under the covers in the middleware layer, the abstraction of a shared address

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

space has to be implemented by using message-passing. Hence, in terms of overheads, the

shared memory abstraction is not less expensive.

l. Reliable and fault-tolerant distributed systems

A reliable and fault-tolerant environment has multiple requirements and aspects, and these

can be addressed using various strategies. They are Consensus algorithms, Replication and

replica management, Voting and quorum systems, Distributed databases and distributed

commit, Self-stabilizing systems, Checkpointing and recovery algorithms, Failure

detectors.

m. Load balancing

The goal of load balancing is to gain higher throughput, and reduce the userperceived

latency. The following are some forms of load balancing: Data migration, Computation

migration and Distributed scheduling.

n. Real-time scheduling

Real-time scheduling is important for mission-critical applications, to accomplish the task

execution on schedule. The problem becomes more challenging in a distributed system

where a global view of the system state is absent. On-line or dynamic changes to the

schedule are also harder to make without a global view of the state.

o. Performance

Although high throughput is not the primary goal of using a distributed system, achieving

good performance is important. The following are some example issues arise in

determining the performance: Metrics and Measurement methods/tools

Applications of distributed computing and newer challenges

• Mobile systems

Mobile systems typically use wireless communication which is based on

electromagnetic waves and utilizes a shared broadcast medium. Hence, the characteristics

of communication are different; many issues such as range of transmission and power of

transmission come into play, besides various engineering issues such as battery power

conservation, interfacing with the wired Internet, signal processing and interference

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

• Sensor networks

A sensor is a processor with an electro-mechanical interface that is capable of

sensing physical parameters, such as temperature, velocity, pressure, humidity, and

chemicals. Recent developments in cost-effective hardware technology have made it

possible to deploy very large (of the order of 106 or higher) low-cost sensors.

• Ubiquitous or pervasive computing

Ubiquitous systems represent a class of computing where the processors embedded

in and seamlessly pervading through the environment perform application functions in the

background, much like in sci-fi movies. The intelligent home, and the smart workplace are

some example of ubiquitous environments currently under intense research and

development.

• Peer-to-peer computing

Peer-to-peer (P2P) computing represents computing over an application layer

network wherein all interactions among the processors are at a “peer” level, without any

hierarchy among the processors. Thus, all processors are equal and play a symmetric role

in the computation.

• Publish-subscribe, content distribution, and multimedia

In a dynamic environment where the information constantly fluctuates (varying

stock prices is a typical example), there needs to be:

(i) an efficient mechanism for distributing this information (publish),

(ii) an efficient mechanism to allow end users to indicate interest in receiving

specific kinds of information (subscribe)

(iii) an efficient mechanism for aggregating large volumes of published

information and filtering it as per the user’s subscription filter

• Distributed agents

Agents are software processes or robots that can move around the system to do

specific tasks for which they are specially programmed. The name “agent” derives from

the fact that the agents do work on behalf of some broader objective.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 – DISTRIBUTED COMPUTING

• Distributed data mining

Data mining algorithms examine large amounts of data to detect patterns and trends

in the data, to mine or extract useful information. A traditional example is: examining the

purchasing patterns of customers in order to profile the customers and enhance the efficacy

of directed marketing schemes.

• Grid computing

Many challenges in making grid computing a reality include: scheduling jobs in

such a distributed environment, a framework for implementing quality of service and real-

time guarantees, and, of course, security of individual machines as well as of jobs being

executed in this setting.

• Security in distributed systems

The traditional challenges of security in a distributed setting include: confidentiality

(ensuring that only authorized processes can access certain information),

authentication (ensuring the source of received information and the identity of the sending

process), and availability (maintaining allowed access to services despite malicious

actions). The goal is to meet these challenges with efficient and scalable solutions.

