
 MC4204 MOBILE APPLICATION DEVELOPMENT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

3.2 DESIGN PATTERNS FOR LIMITED MEMORY

When composing designs for devices with a limited amount of memory, the
most important principle is not to waste memory, as pointed out by Noble
and Weir (2001). This means that the design should be based on the most adequate
data structure, which offers the right operations.

LINEAR DATA STRUCTURES

• In contrast to data structures where a separate memory area is reserved for each
item, linear data structures are those where different elements are
located next to each other in the memory.

• Examples of non-linear data structures include common implementations of
lists and tree-like data structures, whereas linear data structures can be
lists and tables, for instance.

• The difference in the allocation in the memory also plays a part in the quality properties
of data structures.

Linear data structures are generally better for memory management than non-linear

ones for several reasons, as listed in the following:

• Less fragmentation. Linear data structures occupy memory place from one

location, whereas non-linear ones can be located in different places. Obviously, the
former results in less possibility for fragmentation.

• Less searching overhead. Reserving a linear block of memory for several

items only takes one search for a suitable memory element in the run-time

environment, whereas non-linear structures require one request for memory per

allocated element. Combined with a design where one object allocates a number of

child objects, this may also lead to a serious performance problem.

• Design-time management. Linear blocks are easier to manage at design

time, as fewer reservations are made. This usually leads to cleaner designs.

• Monitoring. Addressing can be performed in a monitored fashion, because it is

possible to check that the used index refers to a legal object.

• Cache improvement. When using linear data structures, it is more likely that the

next data element is already in cache, as cache works internally with blocks of

memory. A related issue is that most caches expect that data structures are used in

increasing order of used memory locations. Therefore, it is beneficial to reflect this in

designs where applicable.

• Index uses less memory. An absolute reference to an object usually consumes 32

bits, whereas by allocating objects to a vector of 256 objects, assuming that this is the

upper limit of objects, an index of only 8 bits can be used. Furthermore, it is possible

to check that there will be no invalid indexing.

BASIC DESIGN DECISIONS

1. Allocate all memory at the beginning of a program. This ensures that the application
always has all the memory it needs, and memory allocation can only fail at the
beginning of the program.

2. Allocate memory for several items, even if you only need one. Then, one can

build a policy where a number of objects is reserved with one allocation request.

These objects can then be used later when needed

3. Use standard allocation sizes

 MC4204 MOBILE APPLICATION DEVELOPMENT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

4. Reuse objects

5. Release early, allocate late

6. Use permanent storage or ROM when applicable. In many situations, it is not
even desirable to keep all the data structures in the program memory due to physical
restrictions.

7. Avoid recursion. Invoking methods obviously causes stack frames to be generated.

While the size of an individual stack frame can be small – for instance, in Kilo Virtual

Machine (KVM), which is a mobile Java virtual machine commonly used in early

Java enabled mobile phones, the size of a single stack frame is at least 28 bytes (7 × 4
bytes) – functions calling themselves recursively can end up using a lot of stack, if the depth

of the recursion is not considered beforehand.

Data Packing

Data packing is probably the most obvious way to reduce memory

consumption. There are several sides to data packing.

Use compression with care. In addition to considering the data layout in memory, there

are several compression techniques for decreasing the size of a file.

• Table compression, also referred to as nibble coding or Huffman coding,
is about encoding each element of data in a variable

number of bits so that the more common elements require fewer bits.

• Difference coding is based on representing sequences of data according to

the differences between them. This typically results in

improved memory reduction than table compression, but also sometimes leads to more
complexity, as not only absolute values but also differences are to be managed.

• Adaptive compression is based on algorithms that analyze the data to be

compressed and then adapt their behavior accordingly. Again, further

complexity is introduced, as it is the compression algorithm that is evolving, not

only data.

