

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

V OPERATING SYSTEM DESIGN AND IMPLEMENTATION

DESIGN GOALS

The first problem in designing a system is to define goals and specifications. At the highest level,

the design of the system will be affected by the choice of hardware and the type of system: traditional

desktop/laptop, mobile, distributed, or real time. Beyond this highest design level, the requirements may

be much harder to specify.

The requirements can, however, be divided into two basic groups:

User goals and system goals.

 User goals

Convenience and efficiency , Easy to learn , Reliable , Safe and Fast

 System goals

Easy to design, implement, and maintain , Flexible, reliable, error-free, and efficient

Mechanisms and Policies

Mechanisms determine how to do something; policies determine what will be done.

For example, the timer construct is a mechanism for ensuring CPU protection, but deciding how long

the timer is to be set for a particular user is a policy decision.

• Early OS in assembly language, Now C, C++

• Using emulators of the target hardware, particularly if the real hardware is unavailable (

e.g. not built yet), or not a suitable platform for development, (e.g. smart phones, game

consoles, or other similar devices.)

• Android

Library : C, C++

Application Frameworks : JAVA

1. OPERATING SYSTEM STRUCTURE

Operating system can be implemented with the help of various structures. The structure of the OS

depends mainly on how the various common components of the operating system are interconnected

and melded into the kernel.

Depending on this we have following structures of the operating system:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

 Monolithic Structure

 Layered Approach

 Microkernels

 Modules

 Hybrid Systems

 macOS and iOS

 Android

 Monolithic structure:

Such operating systems do not have well defined structure and are small, simple and limited systems.

The interfaces and levels of functionality are not well separated. MS-DOS is an example of such

operating system. In MS-DOS application programs are able to access the basic I/O routines. These

types of operating system cause the entire system to crash if one of the user programs fails. Diagram of

the structure of MS-DOS is shown below.

An example of such limited structuring is the original UNIX operating system, which consists

of two separable parts: the kernel and the system programs. The kernel is further separated into a series

of interfaces and device drivers, which have been added and expanded over the years as UNIX has

evolved. Everything below the system-call interface and above the physical hardware is the kernel. The

kernel provides the file system, CPU scheduling, memory management, and other operating system

functions through system calls. Taken in sum, that is an enormous amount of functionality to be

combined into one single address space. UNIX Structure is shown below

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

The Linux operating system is based on UNIX shown in the figure below. Applications typically use

the glibc standard C library when communicating with the system call interface to the kernel. The Linux

kernel is monolithic in that it runs entirely in kernel mode in a single address space, it does have a

modular design that allows the kernel to be modified during run time.

 Layered Approach

An OS can be broken into pieces and retain much more control on system. In this structure the

OS is broken into number of layers (levels). The bottom layer (layer 0) is the hardware and the topmost

layer (layer N) is the user interface. These layers are so designed that each layer uses the functions of

the lower level layers only. This simplifies the debugging process as if lower level layers are debugged

and an error occurs during debugging then the error must be on that layer only as the lower level

layers have already been debugged. The main disadvantage of this structure is that at each layer,

the data needs to be modified and passed on which adds overhead to the system. Moreover careful

planning of the layers is necessary as a layer can use only lower level layers. UNIX is an example of

this structure.

 Micro-kernel:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

This structure designs the operating system by removing all non-essential components from the

kernel and implementing them as system and user programs. This result in a smaller kernel called the

micro-kernel.

Advantages of this structure are that all new services need to be added to user space and does

not require the kernel to be modified. Thus it is more secure and reliable as if a service fails then rest of

the operating system remains untouched. Mac OS is an example of this type of OS.

 Modular structure or approach:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

The best approach for an OS. It involves designing of a modular kernel. The kernel has only set

of core components and other services are added as dynamically loadable modules to the kernel either

during run time or boot time. It resembles layered structure due to the fact that each kernel has defined

and protected interfaces but it is more flexible than the layered structure as a module can call any other

module. For example Solaris OS is organized as shown in the figure.

 Hybrid Systems

The Apple macOS operating system and the two mobile operating systems—iOS and Android.

macOS and iOS

Apple’s macOS operating system is designed to run primarily on desktop and laptop computer

systems, whereas iOS is a mobile operating system designed for the iPhone smartphone and iPad tablet

computer. Highlights of the various layers include the following:

 User experience layer. This layer defines the software interface that allows users to interact

with the computing devices. macOS uses the Aqua user interface, which is designed for a mouse

or trackpad, whereas iOS uses the Springboard user interface, which is designed for touch

devices.

 Application frameworks layer. This layer includes the Cocoa and Cocoa Touch frameworks,

which provide an API for the Objective-C and Swift programming languages. The primary

difference between Cocoa and Cocoa Touch is that the former is used for developing macOS

applications, and the latter by iOS to provide support for hardware features unique to mobile

devices, such as touch screens.

 Core frameworks. This layer defines frameworks that support graphics and media

including, Quicktime and OpenGL.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

 Kernel environment. This environment, also known as Darwin, includes the Mach

microkernel and the BSD UNIX kernel.

Applications can be designed to take advantage of user-experience features or to bypass them and interact

directly with either the application framework or the core framework. Additionally, an application can

forego frameworks entirely and communicate directly with the kernel environment.

Some significant distinctions between macOS and iOS include the following:

 Because macOS is intended for desktop and laptop computer systems, it is compiled to run on Intel

architectures. iOS is designed for mobile devices and thus is compiled for ARM-based architectures.

Similarly, the iOS kernel has been modified somewhat to address specific features and needs of

mobile systems, such as power management and aggressive memory management. Additionally,

iOS has more stringent security settings than macOS.

 The iOS operating system is generally much more restricted to developers than macOS and may

even be closed to developers. For example, iOS restricts access to POSIX and BSD APIs on iOS,

whereas they are openly available to developers on macOS.

Darwin OS

Darwin OS is a layered system that consists primarily of the Mach microkernel and the BSD

UNIX kernel. Darwin’s structure is shown below

Darwin provides two system-call interfaces: Mach system calls (known as traps) and BSD

system calls (which provide POSIX functionality). The interface to these system calls is a rich set

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

of libraries that includes not only the standard C library but also libraries that provide networking,

security, and programming language support.

Beneath the system-call interface, Mach provides fundamental operating system services,

including memory management, CPU scheduling, and inter process communication (IPC) facilities such

as message passing and remote procedure calls (RPCs). Much of the functionality provided by Mach is

available through kernel abstractions, which include tasks (a Mach process), threads, memory objects,

and ports (used for IPC). As an example, an application may create a new process using the BSD POSIX

fork() system call. Mach will, in turn, use a task kernel abstraction to represent the process in the kernel.

In addition to Mach and BSD, the kernel environment provides an I/O kit for development of

device drivers and dynamically loadable modules (which macOS refers to as kernel extensions, or

kexts).

Android

Developed for Android smartphones and tablet computers. Whereas iOS is designed to run on

Apple mobile devices and is close-sourced, Android runs on a variety of mobile platforms and is open

sourced, partly explaining its rapid rise in popularity. Android is similar to iOS in that it is a layered stack

of software that provides a rich set of frameworks supporting graphics, audio, and hardware features.

These features, in turn, provide a platform for developing mobile applications that run on a multitude of

Android-enabled devices.

Software designers for Android devices develop applications in the Java language, but they do

not generally use the standard Java API. Google has designed a separate Android API for Java

development. Java applications are compiled into a form that can execute on the Android RunTime ART,

a virtual machine designed for Android and optimized for mobile devices with limited

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Dr.I.Vallirathi, Asso.Prof/CSE CS3451-Introduction to Operating System

memory and CPU processing capabilities. Java programs are first compiled to a Java bytecode

.class file and then translated into an executable .dex file. Whereas many Java virtual machines perform

just-in-time (JIT) compilation to improve application efficiency, ART performs ahead-of- time (AOT)

compilation

The structure of Android appears is shown below

.dex files are compiled into native machine code when they are installed on a device, from which

they can execute on the ART. AOT compilation allows more efficient application execution as well as

reduced power consumption, features that are crucial for mobile systems.

Programs written using Java native interface JNI are generally not portable from one hardware

device to another. The set of native libraries available for Android applications includes frameworks for

developing web browsers (webkit), database support (SQLite), and network support, such as secure

sockets (SSLs). Android can run on an almost unlimited number of hardware devices, Google has chosen

to abstract the physical hardware through the hardware abstraction layer, or HAL. By abstracting all

hardware, such as the camera, GPS chip, and other sensors, the HAL provides applications with a

consistent view independent of specific hardware. This feature, of course, allows developers to write

programs that are portable across different hardware platforms.

The standard C library used by Linux systems is the GNU C library (glibc). Google instead

developed the Bionic standard C library for Android. Not only does Bionic have a smaller memory

footprint than glibc, but it also has been designed for the slower CPUs that characterize mobile devices.

At the bottom of Android’s software stack is the Linux kernel. Google has modified the Linux kernel

used in Android in a variety of areas to support the special needs of mobile systems, such as power

management. It has also made changes in memory management and allocation.

