
Covective Mass Transfer

Definition:

Mass transfer between surface and liquid / gas due to concentration difference.

Terms used in Connective mass Transfer:

Sherwood number: [HMT Data Book Pg.No. 112]

The ratio of concentration gradient at the boundary by diffusion to concentration gradient at the boundary by convection

$$S_h = \frac{h_m L}{D_{ab}} \ \ \mbox{(for plates)} \ \ \mbox{and} \ \ S_h = \frac{h_m d}{D_{ab}} \ \ \ \mbox{(for Tubes)}$$

Where,

 $\underline{h}_{\underline{m}}$ = Mass transfer coefficient (m/sec); L = Length (m); d = Diameter (m); D_{ab} = Diffusion Coefficient (m²/sec)

Schmidt number: [HMT Data Book Pg.No. 112]

The ratio of Molecular diffusivity of momentum to the molecular diffusivity of mass. v

$$S_c = \frac{\upsilon}{D_{ab}} = \frac{\mu}{\rho D_{ab}}$$

Where,

 $v = \text{Kinematic viscosity } (m^2/\text{sec}), D_{ab} = \text{Diffusion Coefficient } (m^2/\text{sec})$

Reynolds number: [HMT Data Book Pg.No. 112]

The ratio of Inertia force to viscous force

$$R_{\rm e}=rac{uL}{v}$$
 (for plates) and $R_{\rm e}=rac{ud}{v}$ (for Tubes)

Where,

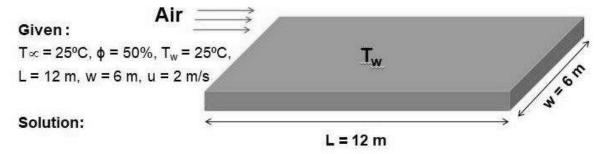
u = Velocity (m/sec); v = Kinematic viscosity (m²/sec); L = Length (m); d = Diameter (m)

It used to classify the type of flow

Flat Plate	Tubes
if R _e < 5 x 10 ⁵ flow is laminar	if R _e < 2000 flow is laminar
if R _e > 5 x 10 ⁵ flow is turbulent	if R _e > 2000 flow is turbulent

Lewis number: [HMT Data Book Pg.No. 112]

The ratio heat diffusivity to mass diffusivity


 $L_e = \frac{S_c}{P_r}$

Where,

Pr = Prandtl Number

Problem 1:

Air at 25°C, 50% R.H, flows over a swimming pool at a surface temperature of 25°C of 12 m x 6 m. The velocity of air in the length direction is 2m / sec. Determine the (a) mass transfer coefficient (b) mass rate of water evaporation

Since velocity is given in the problem, it is a convection mass transfer.

Step 1: Determination of film temperature (T_f)

$$T_f = \, \frac{T_w + T_\alpha}{2} = \frac{25 + 25}{2} = \, 25^{\circ}C$$

Step 2: Taking properties of air, [from HMT Data book, Pg.No. 34]

Corresponding to $T_f = 25^{\circ}C$,

$$v = 15.53 \times 10^{-6} \frac{\text{m}^2}{\text{s}}$$
 $P_v = 0.702$

Step 3: Determination of type of flow:

$$R_e = \frac{uL}{\nu} = \frac{2\,x\,12}{15.\,53\,x\,10^{-6}} = 1545396 > 5\,x\,10^5$$

Since greater than 5×10^5 , the flow can be assumed as turbulent or Laminar - turbulent

Here we assume the flow is Laminar - turbulent.

Step 4: Determination of Diffusion coefficient, [from HMT Data book, Pg.No. 181]

Corresponding to the medium, (water – air) at $T_f = 25$ °C

$$D_{ab} = 25.83 \times 10^{-6} \, \text{m}^2/\text{s}$$

Step 5: Determination of Schmidt Number (Sc),

$$S_c = \frac{v}{D_{ch}} = \frac{15.53 \times 10^{-6}}{25.83 \times 10^{-5}} = 0.60123$$

Step 6: Determination of Sherwood Number (S_b), From HMT data book, <u>Pg.No.</u> 177,

$$S_h = [0.037R_e^{0.8} - 871]S_c^{0.33}$$

$$\begin{split} S_h &= [0.037 \ x \ 1545396 - \ 871] 0.60123^{0.33} \\ &= 2059.4906 \end{split}$$

But we know that, [HMT Data Book Pg.No. 112]

$$S_h = \frac{h_m L}{D_{ab}} = 2059.4906$$

Step 7: Determination of mass transfer coefficient (hm),

$$\begin{split} h_m = \frac{S_h D_{ab}}{L} = \frac{2059.49 \, x \, 2.583 \, x \, 10^{-5}}{12} \\ = \ 4.43305 \, x \, 10^{-3} \frac{m}{s} \end{split}$$

Step 8: Mass of flow rate evaporated (mw),

$$\dot{m}_w = h_m A (\rho_{aw} - \phi \rho_{a\infty})$$

Where,

$$\rho_{\rm aw}$$
 = Density of water vapor at $T_{\rm w}$ = $\frac{1}{v_{\rm g}}$

$$\rho_{\rm ax}$$
 = Density of water vapor at $T_{\rm x}$ = $\frac{1}{v_{\rm g}}$

From steam tables, corresponding to T_w = T_∞ = 25°C,

$$\nu_g = 43.402 \ \frac{m^3}{kg}$$

$$\rho_{aw} = \frac{1}{\nu_g} = 0.02304 \ \frac{m^3}{kg}$$

.. Mass of flow rate evaporated

$$\begin{split} \dot{m}_w &= 4.43305 \, x \, 10^{-3} x \, (12 \, x \, 6) (0.02304 \\ &- 0.5 \, x \, 0.02304) = 3.6769 \, x \, 10^{-3} \frac{kg}{sec} \end{split}$$