## Non current coplander force system:

1. Resolve the given forces, if they are inclined to reference x and y Axis.
2. Find the sum of horizontal component of forces $\sum F H$
3. Find the sum of vertical component of forces $\sum F V$
4. 4. Calculate the resultant force $\mathrm{R}=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.}$
1. Angle of inclination of resultant $\theta=\tan ^{-1}\left[\frac{\sum_{\sum F H}}{\sum F H}\right]$
2. If the force moment system is converted into a single force, coordinate position is given by

$$
\begin{aligned}
& \sum M_{o}=R \times x \\
& \sum M_{o}=\sum F_{v} \times x \\
& \sum M_{o}=\sum F_{H} \times y
\end{aligned}
$$

A plate os acted upon by three force and two couple as shown in fig. determine the resultant of these force couple system and find co-ordinate x of the point on the x axis through which the resultant is passed


## Given

Three force $1.5 \mathrm{KN}, 2 \mathrm{KN}, 3 \mathrm{KN}$
Two couple 100N.m 80 N.m
To find
Resultant force, location
Soln:
Resultant force $\mathrm{R}=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.}$
Sum of horizontal
$\sum F_{H}=0$
$\sum F_{H}=1.5-3$
$\sum F_{H}=-1.5 K N 1$
Sum of vertical force $\sum F v=0$
$\Sigma F_{V}=-2 K N$
Resultant $R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)\right.\right.}$

$$
R=\sqrt{[-1.5]^{2}[-2]^{2}}
$$

$R=2.5 \mathrm{KN}$
$\theta=\tan ^{-1}\left[\frac{\sum F_{V}}{\sum F_{V}}\right]=\tan ^{-1}\left[\frac{-2}{-1.5}\right]$
$\theta=53.13^{\circ}$

To locate the resultant
By varigon's Thorem $\quad \downarrow+\uparrow-$
$\sum M_{o}=R \times x$ and $\sum M_{o}=\sum F_{y} \times x$
$\sum M_{o}=[3 \times 0.3]+[-2 \times 0.5]+[-1.5 \times 0.2]+[-0.1]+[-0.08]=0$
$\sum M_{o}=-0.58$ KN. $M$
$\sum M o=0.58 \mathrm{KN} . M$ [clock wise]
The co-ordinate x of the point through which the resulted passes is given by
$\sum \mathrm{Mo}=\sum F Y \times x$

$$
x=\frac{0.58}{2}
$$

$0.58=2 \times x$
$x=0.29 m$
$x=290 \mathrm{~mm}$
we want to find the intersection
$\sum M_{o}=\sum F_{H} \times y$
$0.581 .5 \times y$
$y=0.387 m$
The three forces and a couple shown below are applied to an angel bracket
(i) Find he Resultant of this system of forces
(ii) Locate the points where the line o action of the resultant intersects line AB and the line BC


Soln
Free body diagram


1. Sum of Horizontal force

$$
\begin{aligned}
& \sum F_{H}=0 \\
& \sum F_{H}=+125 \cos 60-200=0 \\
& \sum F_{H}=-137.5 \mathrm{~N}
\end{aligned}
$$

2. Sum of Vertical Force
$\sum F_{V}=0 \downarrow-\uparrow+$
$\sum F_{V}=-50+125 \sin 60=0$
$\sum F_{V}=58.25$
3. Resultant force' $R$ '

$$
\begin{aligned}
& R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.} \\
& R=\sqrt{[-137.5]^{2}+[58.23]^{2}} \\
& R=149.32 \mathrm{~N}
\end{aligned}
$$

4. Direction of Resultant force $\alpha$
$\alpha=\tan ^{-1}\left(\frac{\sum F V}{\sum F V}\right)$
$\alpha=\tan ^{-1}\left(\frac{58.25}{137.5}\right)$
$\alpha=22^{\circ} 57^{\prime}$

Location of Resultant Force:
By Varigon’s Theorem

$$
\begin{aligned}
& \sum M_{A}=\sum F_{V} \times x \text { and } \sum M_{A}=\sum F_{H} \times y \\
& \sum M_{A}=(200 \times 0.2)+(-125 \sin 60 \times 0.3)-80: 0 \\
& \sum M_{A}=40-32.47-80 \\
& \sum M_{A}=-7.5 N . m \\
& \sum M_{A}=\sum F_{V} \times x
\end{aligned}
$$

$$
\begin{aligned}
& 7.5=58.25 \times x \\
& x=7.5 / 58.25=0.12 \mathrm{~m} \\
& x=128.75 \mathrm{~mm} \\
& \sum M_{A}=\sum F_{v} \times y \\
& 7.5=137.25 \times y \\
& y=7.5 / 137.25=0.05 \mathrm{~m} \\
& y=54.64 \mathrm{~mm}
\end{aligned}
$$



## Problem:

A system of forces acts as shown in fig.find the magnitude of A and B so that resultant of the force system passes through P and Q


To Find:
Forces acts on A and B
Soln: Free body diagram


The resultant forces passes through P and Q is moment About pis zero and also moment about $\mathrm{Q}=0$

It only means that the algebraic sum of moment about P and Q is equal to zero

$$
\sum M_{P}=0 \quad \downarrow+\uparrow-
$$

$$
\begin{aligned}
\sum M_{P}=( & +B \cos 40 \times 1.5) \\
& +(300 \cos 45 \times 1.5)+350 \\
& +(-A \sin 30 \times 4.5)+(-A \cos 30 \times 1.5)=0
\end{aligned}
$$

$\sum M_{P}=1.149 B+318.19350-2.25 A-1.29$
$\Sigma M_{P}=1.49 B+668.19-3.54 A=0$
$-3.54 A+1.149 B=-668.19$ $\qquad$ $>(1)$

$$
\begin{aligned}
& \sum M_{Q}=0 \quad \downarrow+\uparrow- \\
& \sum M_{Q}=(B \cos 40 \times 3)+(-B \sin 40 \times 2.25)+(-300 \sin 45 \times 2.25)+350+ \\
& (-A \sin \\
& 30 \times 2.25)=0 \\
& 2.29 B-1.44 B-477+350-1.125 A=0 \\
& 0.85 B-127-1.125 A=0 \\
& -1.25 A+0.85 B=127-------->(2)
\end{aligned}
$$

Solve 1\&2
$-3.54 A+1.149 B=-668.19$
$-1.125 A+0.85 B=127$ $\qquad$
(1) $\times 1.25 \Rightarrow \gg-3.982 A+1.292 B=-751.7$
(2) $\times 3.54=>3.982 A+(-) 3.009 B=<->449.58$

$$
-171 B=-1201.29
$$

$$
\begin{aligned}
& B=(-1201.29) /(-1.71) \\
& B=702.508 N
\end{aligned}
$$

B Value substituting in Eqn (1)
$-3.54 A+1.149 \times 702.508=-668.19$
$-3.54 A+807.182=-668.19$
$-3.54 A=-668.19-807.182$
$-3.54 A=-1475.37$
$A=(-1475.37) /(-3.54)$

$$
A=416.77 N
$$

Result:-
Force on $A=416.77 \mathrm{~N}$
Force on $B=702.508 \mathrm{~N}$
Take moment about ' A '
$\sum M_{A}=0$
$\sum M_{A}=(500 \times 11)+(-200 \times 7)+(1200 \times 5)+(-300 \times 2)$
$\sum M_{A}=5500=1400+6000-600$
$\sum M_{A}=9500$ N.m
By varignon's theorem
$\sum M_{A}=R \times x$
$9500=1200 \times x$
$x=7.91 m$


Force couple systemant 'A'


Couple at $A=1200 \times 7.91$
$A=9492 \mathrm{~N} . \mathrm{m}$
Couple system at B


Problem:
A plate ABCD in the shape of parallelogram is acted upon the two couples, as shown in the fig. Determine the angle B if the resultant couple is 1.8 N.m clockwise


## Given:

Resultant couple $=1.8 \mathrm{~N} . \mathrm{m}$
Free body diagram


Distance of $A E=A B+B E$
$A B=1.05 \mathrm{~m}$
To find BE
$\tan \beta=\frac{C E}{B E}=\frac{0.4}{B E}$
$B E=0.4 / \tan \beta$
$A E=A B+B E$
$A E=1.05+\frac{0.4}{\tan \beta}$
Given the resultant couple $\sum M_{A}=1.8 N . M$
Take moment about A
$\sum M_{A}=[-21 \times 0.4]+[-12 \cos \beta \times 0.4]+[12 \sin \beta \times A E]$
$\sum M_{A}=1.8$ N.M
$1.8=-8.4-4.8 \cos \beta+12 \sin \beta \times\left[1.05+\frac{0.4}{\tan \beta}\right]$
$1.8=-8.4-4.8 \cos \beta+12.6 \sin \beta+\frac{4.8}{\frac{\sin \beta}{\cos \beta}} \sin \beta \quad \tan \theta=\frac{\sin \theta}{\cos \theta}$
$1.8=-8.4-4.8 \cos \beta+12.6 \sin \beta+4.8 \cos \beta$
$1.8+8.4=-4.8 \cos \beta+12.6 \sin \beta+4.8 \cos \beta$
$10.2=12.6 \sin \beta$
$\operatorname{Sin} \beta=\frac{10.2}{12.6}$
$B=\sin -1\left(\frac{10.2}{12.6}\right) \quad B=54^{\circ}$

