ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY

 Approved by AICTE \& Affliated to anna university Accredited with A^{+}grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERINGNAME OF THE SUBJECT: ENGINEERING MECHANICS
SUBJECT CODE : ME3351
REGULATION 2021
UNIT V: DYNAMICS OF PARTICLES

Impact of Elastic Bodies:

A collision between two bodies to be an impact, if the bodies are in contact for short interval of a time and exert very large force on a short period of time.

On impact bodies deform first and then recover due to elastic properties and start moving with different velocities.

Types of Impact:

* Line of impact
* Direct impact
* Oblique impact
* Central impact
* Eccentric impact

Perfectly Elastic impact: [$\mathrm{e}=1]$
If both of bodies regain to their original shape and size after the impact. Both momentum and energy is conserved.

In elastic impact $[\mathrm{e}<1$]
The collision do not return to their original shape and size completely after the collection. Only the momentum remains conserved, but there is a loss energy.

Period of collision:
During the collection, the bodies undergo a deformation for a small time interval and then recover the deformation in a further small interval.

Time elapse b / w initial contact and maximum deformation is called the period of deformation. And the instant of separation is called time of restitution or period of recovery.

Principal of collision:
Consider 2 bodies approach each other with the velocity v_{1} and v_{2} masses m_{1} and m_{2} are shown in fig.

Let ' F ' be force entered due to collection at a small time. Apply conservation of momentum principal for both bodies

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1^{1}}+m_{2} v_{2^{1}}
$$

Newton's impact Eqn:
Coefficient of restitution, $\mathrm{e}=\frac{\text { relative velocity of separation }}{\text { relative velocity of approach }}$

$$
\mathrm{e}=\frac{v_{1}{ }_{2} v_{1}}{v_{1}-v_{2}}
$$

Total kinetic energy at before impact
$=\frac{1}{2} m_{1} v+\frac{1}{2} m_{2} v_{2}^{2}$
Total kinetic energy at after impact
$=\frac{1}{2} m_{1} v_{1}^{12}+\frac{1}{2} m_{2} v_{2}{ }^{12}$
Loss of K.E=Intial K.E - Final K.E
Oblique:
$\mathrm{V}_{1} \sin \alpha_{1}=\mathrm{V}_{1}{ }^{1} \sin \theta_{1}$
$\mathrm{V}_{2} \sin \propto_{1}=\mathrm{V}_{2} \sin \theta_{1}$
$\mathrm{m}_{1} \mathrm{v}_{1} \cos \alpha_{1}+\mathrm{m}_{1} \mathrm{~V}_{1}{ }^{1} \cos \theta_{1}+\mathrm{m}_{2} \mathrm{v}_{2}{ }^{1} \cos \theta_{2}$ $\mathrm{m}_{1}=\mathrm{m}_{2}$

$$
\mathrm{V}_{2}{ }^{1} \cos \theta_{2}-\mathrm{V}_{1}{ }^{1} \cos \theta_{1}
$$

$\mathrm{e}=$

$$
\mathrm{V}_{1} \cos \alpha_{1}-\mathrm{V}_{2} \cos \alpha_{2}
$$

Problem based on impact of elastic body:

1. A sphere of 1 kg moving at $3 \mathrm{~m} / \mathrm{s}$, collides with another sphere of weight of 5 kg in the same Direction at $0.6 \mathrm{~m} / \mathrm{s}$. If the collision is perfectly elastic, find the velocity after impact.

Given:

$$
\begin{aligned}
& \mathrm{m}_{1}=1 \mathrm{~kg} \\
& \mathrm{~m}_{2}=5 \mathrm{~kg} \\
& \mathrm{v}_{1}=3 \mathrm{~m} / \mathrm{s} \\
& \mathrm{v}_{2}=0.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

m_{1}

Perfectly elastic impact $\mathrm{e}=1$
To find:

Velocity at after the impact $V_{1}{ }^{1} \& V_{2}{ }^{1}$

Soln:1

Law of conservation of momentum

$$
\begin{aligned}
& \mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}^{1}+\mathrm{m}_{2} \mathrm{v}_{2} \\
& 1 \times 3+5 \times 0.6=1 \mathrm{v}_{1}{ }^{1}+5 \mathrm{v}_{2}{ }^{1} \\
& \mathrm{~V}_{1}{ }^{1}+5 \mathrm{~V}_{2}{ }^{1}=6-\cdots---->(1)
\end{aligned}
$$

The coefficient of restitution, $\quad e=V_{2}{ }^{1}-V_{1}{ }^{1}$

$$
\overline{\mathrm{V}_{1}-\mathrm{V}_{2}}
$$

$$
\begin{aligned}
& \mathrm{e}=1[\text { perfectly Elastic Impact }] \\
& 1=\frac{\mathrm{V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}}{3-0.6} \\
& \mathrm{~V}_{2}{ }^{1}-\mathrm{V}_{2}{ }^{1}=1 \times[3-0.6] \\
& \mathrm{V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}=2.4----->(2)
\end{aligned}
$$

Solve Eqn (1) \& (2)

$$
\begin{gathered}
\mathrm{V}_{1}{ }^{1}+5 \mathrm{~V}_{2}{ }^{1}=6 \\
\mathrm{~V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}=2.4 \\
\hline 6 \mathrm{~V}_{2}{ }^{1}=8.4 \\
\mathrm{~V}_{2}{ }^{1}=8.4 / 6 \\
\mathrm{~V}_{2}{ }^{1}=1.4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$\mathrm{V}_{2}{ }^{1}$ value sub in Eqn (1)

$$
\begin{aligned}
& \mathrm{V}_{1}{ }^{1}+5 \mathrm{~V}_{2}{ }^{1}=6 \quad------>\quad \mathrm{V}_{1}{ }^{1}=6-\left[5 \times \mathrm{V}_{2}^{1}\right] \\
& \mathrm{V}_{1}{ }^{1}+=6-[5 \times 1.4]
\end{aligned}
$$

$\mathrm{V}_{1}{ }^{1}=-1 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{1}{ }^{1}=1 \mathrm{~m} / \mathrm{s}$
2. A car weighting 5 KN is moving east with a velocity of 54 k m p h and collide with a second car weighting 12 KN is moving west with a velocity of 72 k m ph If the impact is perfectly plastic, what will be the velocities of the cars.

$$
\mathrm{V}_{1}=54 \mathrm{~km} / \mathrm{h} \quad \mathrm{v}_{2}=-72 \mathrm{~km} / \mathrm{h}
$$

Given:

$$
\begin{aligned}
& \square \rightarrow \leftarrow \square \\
& \mathrm{W}_{1}=5 K N \quad \mathrm{~W}_{2}=12 K N \\
& \mathrm{M}_{1}=5 / 9.81 \quad \mathrm{M}_{2}=12 / 981
\end{aligned}
$$

$$
\mathrm{W}_{1}=5 \mathrm{KN}=5 / 9.81=0.509 \mathrm{~kg}=\mathrm{m}_{1}
$$

$$
\mathrm{W}_{2}=12 \mathrm{KN}=12 / 9.81=1.22 \mathrm{~kg}=\mathrm{m}_{2}
$$

$$
\mathrm{V}_{1}=54 \mathrm{~km} / \mathrm{hr}
$$

$$
\mathrm{V}_{2}=-72 \mathrm{~km} / \mathrm{hr}
$$

To Find:
Velocity of car
Soln:
Law of conservation momentum
$\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{\mathrm{N}}{ }_{1}^{1}+\mathrm{m} \mathbf{y}{ }_{2}^{1}$
Perfectly plastic means $\mathrm{e}=0$

$$
\therefore \mathrm{v}_{1}{ }^{1}=\mathrm{v}_{2}{ }^{2}=\mathrm{e}
$$

$0.509 \times 54+1.22 \times[-72]=0.509 \times \mathrm{v}_{1}{ }^{1}+1.22 \times \mathrm{v}_{2}{ }^{1}$
$27.486-87.84=[0.509 V c+1.22]$
$-60.354=V c \times 1.729$

$$
V_{c}=-60.354
$$

1.729

$$
V c=-34.90 \mathrm{~km} / \mathrm{hr}
$$

3. Direct central impact occurs between 300 N body moving to right with a velocity of $6 \mathrm{~m} / \mathrm{s}$ and 150N body moving to the left with a velocity of 10 m / s. Find the velocity of each body after the impact if the coefficient of restitution is 0.8 .

Same as problem No:1
Ans: $\mathrm{V}_{2}{ }^{1}=9.2 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{V}_{1}{ }^{1}=-3.6 \mathrm{~m} / \mathrm{s}
$$

4. Two bodies, one of which 20 N and velocity $10 \mathrm{~m} / \mathrm{s}$ and the other of 100 N with a velocity of m / s downward,each other and implinges centerlly. Find the velocity of each body of the impact if the coefficient of restitution is 0.6 . Find also the loss in kinetic energy due to impact.

Given data:

$\mathrm{W}_{1}=20 \mathrm{~N} \quad \mathrm{~m}_{1}=\frac{20}{9.81} \quad \mathrm{~m}_{1}=2.038 \mathrm{~kg}$
$\mathrm{V}_{1}=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{W}_{2}=100 \mathrm{~N} \quad \mathrm{~m}_{1}=\frac{100}{9.81} \quad \mathrm{~m}_{2}=10.19 \mathrm{~kg}$
$\mathrm{V}_{2}=-10 \mathrm{~m} / \mathrm{s}$
Coefficient of restitution, $\mathrm{e}=0.6$
To find:
Final velocity After impact $V_{1}{ }^{1} \& V_{2}{ }^{1}$
Loss of kinetic Energy.

Soln:

Law of conservation of Energy
$\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}{ }^{1}+\mathrm{m}_{2} \mathrm{v}_{2}{ }^{1}$
$(2.038 \times 10)+(10.19 \times-10)=2.038 \mathrm{v}_{1}{ }^{1}+10.19 \times \mathrm{v}_{2}{ }^{1}$

$$
\begin{aligned}
& 20.38-101.9=2.038 \mathrm{v}_{1}{ }^{1}+10.19 \mathrm{v}_{2}{ }^{1} \\
& \quad-81.52=2.038 \mathrm{v}_{1}{ }^{1}+10.19 \mathrm{v}_{2}{ }^{1} \\
& 2.038 \mathrm{v}_{1}{ }^{1}+10.19 \mathrm{v}_{2}{ }^{1}=-81.52------->(1)
\end{aligned}
$$

If coefficient of restitution Eg ' e ' is given

$$
\begin{aligned}
& \mathrm{e}=\frac{\mathrm{V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}}{\mathrm{~V}_{1}-\mathrm{V}_{2}} \\
& 0.6=\frac{\mathrm{V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}}{10-(-10)} \quad \frac{\mathrm{V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}}{20} \\
& \mathrm{~V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}=20 \times 0.6 \\
& \mathrm{~V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}=12--\cdots--->(2)
\end{aligned}
$$

Solve Eqn (1) \& (2)

$$
\begin{equation*}
2.038 \mathrm{~V}_{1}{ }^{1}+10.19 \mathrm{~V}_{2}{ }^{1}=-81.52 \text {------> } \tag{1}
\end{equation*}
$$

Eqn (2) $\times 2.037$

$$
\begin{array}{rr}
2.038 \mathrm{~V}_{2}{ }^{1}-2.038 \mathrm{~V}_{1}{ }^{1}= & 24.456 \\
\hline 12.228 \mathrm{~V}_{2}{ }^{1}= & -57.06
\end{array}
$$

$\mathrm{V}_{2}{ }^{1}=\frac{-57.06}{12.228}$
$\mathrm{V}_{2}{ }^{1}=-4.66 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{2}{ }^{1}$ value sub in Eqn (1)

$$
2.038 \mathrm{~V}_{1}{ }^{1}+10.19 \mathrm{~V}_{2}{ }^{1}=-81.52------->(1)
$$

$$
2.038 \mathrm{~V}_{1}{ }^{1}+10.19 \times(-4.66)=-81.52
$$

$$
2.038 \mathrm{~V}_{1}{ }^{1}+[-47.55]=-81.52
$$

$\mathrm{V}_{1}{ }^{1}=\frac{-81.52+47.55}{2.038}$
$\mathrm{V}_{1}{ }^{1}=\frac{-33.96}{2.038}$
$\mathrm{V}_{1}{ }^{1}=16.66 \mathrm{~m} / \mathrm{s}$
Loss of kinetic Energy:

$$
\begin{gathered}
=\text { Initial kinetic Energy - Final kinetic Energy } \\
\text { [before Impact] } \quad[\text { after impact }]
\end{gathered}
$$

Total kinetic Energy before impact

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{~m}_{1} \mathrm{v}_{1}^{2}+\frac{1}{2}(10.19)(-10)^{2} \\
& =\frac{1}{2}(20038)(10)^{2}+\frac{1}{2}(10.19)(-10)^{2}
\end{aligned}
$$

Before K.E $=611.4$ N.m
Total kinetic at after impact [find K.E]

$$
\begin{aligned}
& =\frac{1}{2} y_{1} \quad{ }^{12}+\frac{1}{2} m_{2}^{12} \\
& =\frac{1}{2} \times(2.038)(-16.66)^{2}+\frac{1}{2} \times(10.19)(-4.66)^{2}
\end{aligned}
$$

After K.E= 394.26 N.m
Loss of kinetic energy during impact
$=$ After K. $\mathrm{E}=$ Before K. E
$=611.4-394.26$
Loss $=217.11$ N.m
Problem 5

A ball of weight 500 g moving with velocity of $\mathrm{im} / \mathrm{sec}$ impings on a bar of mass 1 kg moving with velocity $0.75 \mathrm{~m} / \mathrm{s}$ at the time of impact the velocity of the body are parallel and inclined at 60° to the line joining there centers. Determine the velocity direction of the ball after the impact where $\mathrm{e}=0.6$ also find the loss of kinetic energy due to impact.

$$
\begin{aligned}
& \alpha_{1}=\alpha_{2}=60^{\circ} \\
& m_{1}=500 \mathrm{~g}=\frac{500}{1000}=0.5 \mathrm{~kg} \\
& m_{2}=1 \mathrm{~kg} \\
& v_{1}=1 \mathrm{~m} / \mathrm{s} \\
& v_{2}=0.75
\end{aligned}
$$

Coefficient of restitution $e=0.6$
To find:

1. final velocity $\mathrm{v} 1^{1} \& \mathrm{v} 2^{1}$
2. Direction $\theta_{1} \& \theta_{2}$
3. loss of kinetic energy

Soln:
Law of conservation of momentum
$\mathrm{m}_{1} \mathrm{v}_{1} \cos \propto_{1}+\mathrm{m}_{2} \mathrm{v}_{2} \cos \propto_{2}=\mathrm{m}_{1} \mathrm{v} 1^{1} \cos \theta_{1}+1 \mathrm{v} 2^{1} \cos \theta_{2}$
$0.635=0.5 v 1^{1} \cos \theta_{1}+v 2^{1} \cos \theta_{2}$
If coefficient of restitution is given
$\mathrm{e}=\frac{v 2^{1} \cos \theta_{2}-v 1^{1} \cos \theta_{1}}{v_{1} \cos \alpha_{1}-v_{2} \cos \alpha_{2}}$
$0.6=\frac{v 2^{1} \cos \theta_{2}-v 1^{1} \cos \theta_{1}}{1 \cos 60-0.75 \text { os } 60}$
$0.6[\cos -0.7 \times \cos 60]=v 2^{1} \cos \theta_{2}-v 1^{1} \cos \theta_{1}$
Solve Eqn (1) \& (2)
$0.625=0.5 \mathrm{v} 1^{1} \cos \theta_{1}+\mathrm{v} 2^{1} \cos \theta_{2}$
$\underline{0.075=\mathrm{v} 2^{1} \cos \theta_{2} \mp \mathrm{v} 1^{1} \cos \theta_{1}}$ $0.55=1.5 \mathrm{v} 1^{1} \cos \theta_{1}$
$\mathrm{v} 1^{1} \cos \theta_{1}=\frac{0.55}{1.5}$
$\therefore \mathrm{v} 1^{1} \cos \theta_{1}=0.366$
$\mathrm{v} 1^{1} \sin \theta_{1}=\mathrm{v}_{1} \sin \propto 1$
$=1 \sin 60$
$=0.866$
$\underline{\mathrm{V}_{1}{ }^{1} \sin \theta_{1}}=\frac{0.866}{0.366}$
$\mathrm{V}_{1}{ }^{1} \cos \quad 1$

$$
\begin{aligned}
\tan \theta_{1} & =2.366 \\
\theta_{1} & =\tan ^{-1}(2.366) \\
\theta & =67^{\circ}
\end{aligned}
$$

$\mathrm{V}_{1}{ }^{1} \cos \theta_{1}=0.366$
$V_{1}{ }^{1} \cos 67^{\circ}=0.366$
$\mathrm{V}_{1}{ }^{1}=\frac{0.366}{\cos 67^{\circ}}$
$\mathrm{V}_{1}{ }^{1}=0.94 \mathrm{~m} / \mathrm{s}$
------>
(2) $0.075=\mathrm{V}_{2}{ }^{1} \cos \theta_{2}-\mathrm{V}_{1}{ }^{1} \cos \theta_{1}$

$$
\begin{gathered}
0.075=\mathrm{V}_{2}{ }^{1} \cos \theta_{2}-0.94 \cos 67^{\circ} \\
0.075+0.94 \cos 67^{\circ}=\mathrm{V}_{2}{ }^{1} \cos \theta_{2} \\
0.442=\mathrm{V}_{2}{ }^{1} \cos \theta_{2}
\end{gathered}
$$

$\mathrm{V}_{2}{ }^{1} \sin \theta_{2}=0.6495$
$\underline{\mathrm{V}_{1}{ }^{1} \sin \theta_{1}} \quad=\frac{0.6495}{0.442}$
$\mathrm{V}_{1}{ }^{1} \cos \quad 1$

$$
\tan \theta_{2}=1.469
$$

$$
\theta_{2}=55^{\circ}
$$

$\mathrm{V}_{2}{ }^{1} \cos \theta_{2}=0.442$
$\mathrm{V}_{2}{ }^{1} \cos 55^{\circ}=0.442$

$$
\begin{aligned}
& \mathrm{V}_{2}{ }^{1}=\frac{0.442}{\cos 55^{\circ}} \\
& \mathrm{V}_{2}{ }^{1}=0.785 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Loss of kinetic Energy $=$ Before K.E- After K.E
Before $\mathrm{K} . \mathrm{E}=1 / 2 \mathrm{mv}_{1} \mathrm{~m}_{1}^{2}+1 / \mathrm{mv}_{2} \mathrm{v}_{2}^{2}$

$$
=1 / 2 \times 0.5 \times 1^{2}+1 / 2 \times 1 \times(0.75)^{2}
$$

Before K.E $=0.25+0.281$
Before K.E=0.531 N.m
After kinetic Energy $=1 / 2 \mathrm{~m}_{1} \mathrm{v}_{1}{ }^{2}+1 / 2^{m_{2} \mathrm{v}_{2}}{ }^{2}$

$$
\begin{aligned}
& =1 / 2 \times 0.5 \times(0.94)^{2}+1 / 2 \times 1 \times(0.785)^{2} \\
& =0.2209+0.308
\end{aligned}
$$

After K.E $=0.528$ N.m
Loss of K.E=before K.E-After K.E
$=0.531-0.528$
Loss K.E $=2.1 \times 10^{-3} \mathrm{~N} . \mathrm{m}$

