
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

EXPRESSIONS AND ASSIGNMENT STATEMENTS

• Expressions are the fundamental means of specifying computations in a programming

language

• To understand expression evaluation, need to be familiar with the orders of operator and

operand evaluation

• Essence of imperative languages is dominant role of assignment statements

Arithmetic Expressions

• Arithmetic evaluation was one of the motivations for the development of the first

programming languages

• Arithmetic expressions consist of operators, operands, parentheses, and function calls

• Design issues for arithmetic expressions

• operator precedence rules

• operator associativity rules

• order of operand evaluation

• operand evaluation side effects

• operator overloading

• mode mixing expressions

Arithmetic Expressions: Operators

 A unary operator has one operand

 A binary operator has two operands

 A ternary operator has three operands

Arithmetic Expressions: Operator Precedence Rules

• The operator precedence rules for expression evaluation define the order in which

“adjacent” operators of different precedence levels are evaluated

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• Typical precedence levels

– parentheses

– unary operators

– ** (if the language supports it)

– *, /

– +, -

Arithmetic Expressions: Operator Associativity Rule

The operator associativity rules for expression evaluation define the order in which

adjacent operators with the same precedence level are evaluated

Typical associativity rules

– Left to right, except **, which is right to left

– Sometimes unary operators associate right to left (e.g., in FORTRAN)

APL is different; all operators have equal precedence and all operators associate right to left

Precedence and associativity rules can be overriden with parentheses

Arithmetic Expressions: Conditional Expressions

• Conditional Expressions

– C-based languages (e.g., C, C++)

– An example:

 average = (count == 0)? 0 : sum / count

– Evaluates as if written like

 if (count == 0) average = 0

 else average = sum /count

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Operand Evaluation Order

• Operand evaluation order

1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory; sometimes the constant is in the

machine language instruction

3. Parenthesized expressions: evaluate all operands and operators first

Potentials for Side Effects

Functional side effects: when a function changes a two-way parameter or a non-local variable

Problem with functional side effects:

- When a function referenced in an expression alters another operand of the expression;

e.g., for a parameter change:

 a = 10;

 /* assume that fun changes its parameter */

 b = a + fun(a);

 Functional Side Effects

• Two possible solutions to the problem

1. Write the language definition to disallow functional side effects

• No two-way parameters in functions

• No non-local references in functions

• Advantage: it works!

• Disadvantage: inflexibility of two-way parameters and non-local references

2. Write the language definition to demand that operand evaluation order be fixed

• Disadvantage: limits some compiler optimizations

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Overloaded Operators

• Use of an operator for more than one purpose is called operator overloading

• Some are common (e.g., + for int and float)

• Some are potential trouble (e.g., * in C and C++)

– Loss of compiler error detection (omission of an operand should be a detectable

error)

– Some loss of readability

– Can be avoided by introduction of new symbols (e.g., Pascal’s div for integer

division)

• C++ and Ada allow user-defined overloaded operators

• Potential problems:

– Users can define nonsense operations

– Readability may suffer, even when the operators make sense

Type Conversions

• A narrowing conversion is one that converts an object to a type that cannot include all of

the values of the original type e.g., float to int

• A widening conversion is one in which an object is converted to a type that can include at

least approximations to all of the values of the original type e.g., int to float

Type Conversions: Mixed Mode

• A mixed-mode expression is one that has operands of different types

• A coercion is an implicit type conversion

• Disadvantage of coercions:

– They decrease in the type error detection ability of the compiler

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• In most languages, all numeric types are coerced in expressions, using widening

conversions

• In Ada, there are virtually no coercions in expressions

Explicit Type Conversions

• Explicit Type Conversions

• Called casting in C-based language

• Examples

– C: (int) angle

– Ada: Float (sum)

 Note that Ada’s syntax is similar to function calls

Type Conversions: Errors in Expressions

• Causes

– Inherent limitations of arithmetic, e.g., division by zero

– Limitations of computer arithmetic, e.g. overflow

• Often ignored by the run-time system

Relational and Boolean Expressions

• Relational Expressions

– Use relational operators and operands of various types

– Evaluate to some Boolean representation

– Operator symbols used vary somewhat among languages (!=, /=, .NE., <>, #)

• Boolean Expressions

– Operands are Boolean and the result is Boolean

– Example operators

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

FORTRAN 77 FORTRAN 90 C Ada

 .AND. and && and

 .OR. or || or

 .NOT. not ! not

 xor

No Boolean Type in C

• C has no Boolean type--it uses int type with 0 for false and nonzero for true

• One odd characteristic of C’s expressions: a < b < c is a legal expression, but the result

is not what you might expect:

– Left operator is evaluated, producing 0 or 1

– The evaluation result is then compared with the third operand (i.e., c)

Relational and Boolean Expressions: Operator Precedence

• Precedence of C-based operators

postfix ++, --

unary +, -, prefix ++, --, !

*,/,%

binary +, -

<, >, <=, >=

=, !=

&&

||

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Short Circuit Evaluation

• An expression in which the result is determined without evaluating all of the operands

and/or operators

• Example: (13*a) * (b/13–1)

If a is zero, there is no need to evaluate (b/13-1)

• Problem with non-short-circuit evaluation

index = 1;

while (index < length) && (LIST[index] != value)

 index++;

– When index=length, LIST [index] will cause an indexing problem (assuming LIST

has length -1 elements)

• C, C++, and Java: use short-circuit evaluation for the usual Boolean operators (&& and ||),

but also provide bitwise Boolean operators that are not short circuit (& and |)

• Ada: programmer can specify either (short-circuit is specified with and then and or else)

• Short-circuit evaluation exposes the potential problem of side effects in expressions

e.g. (a > b) || (b++ / 3)

Assignment Statements

• The general syntax

<target_var> <assign_operator> <expression>

• The assignment operator

= FORTRAN, BASIC, PL/I, C, C++, Java

:= ALGOLs, Pascal, Ada

• = can be bad when it is overloaded for the relational operator for equality

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Assignment Statements: Conditional Targets

• Conditional targets (C, C++, and Java)

(flag)? total : subtotal = 0

Which is equivalent to

if (flag)

 total = 0

else

 subtotal = 0

Compound Assignment Operators

• A shorthand method of specifying a commonly needed form of assignment

• Introduced in ALGOL; adopted by C

• Example

a = a + b

is written as

a += b

Unary Assignment Operators

• Unary assignment operators in C-based languages combine increment and decrement

operations with assignment

• Examples

count++ (count incremented)

--count (count decremented)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Assignment as an Expression

• In C, C++, and Java, the assignment statement produces a result and can be used as

operands

• An example:

 while ((ch = getchar())!= EOF){…}

 ch = getchar() is carried out; the result (assigned to ch) is used as a conditional value for

the while statement

Mixed-Mode Assignment

Assignment statements can also be mixed-mode, for example

int a, b;

float c;

c = a / b;

• In Pascal, integer variables can be assigned to real variables, but real variables cannot be

assigned to integers

• In Java, only widening assignment coercions are done

• In Ada, there is no assignment coercion

