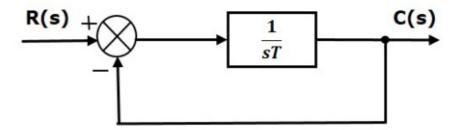
Time Domain Specifications of the First Order System

In this chapter, let us discuss the time response of the first order system. Consider the following block diagram of the closed loop control system. Here, an open loop transfer function, $\frac{1}{sT}$ is connected with a unity negative feedback.



We know that the transfer function of the closed loop control system has unity negative feedback as,

$$rac{C(s)}{R(s)} = rac{G(s)}{1+G(s)}$$

Substitute, $G(s)=rac{1}{sT}$ in the above equation.

$$rac{C(s)}{R(s)} = rac{rac{1}{sT}}{1 + rac{1}{sT}} = rac{1}{sT + 1}$$

The power of s is one in the denominator term. Hence, the above transfer function is of the first order and the system is said to be the **first order system**.

We can re-write the above equation as

$$C(s) = \left(rac{1}{sT+1}
ight)R(s)$$

Where,

- C(s) is the Laplace transform of the output signal c(t),
- R(s) is the Laplace transform of the input signal r(t), and
- T is the time constant.

Follow these steps to get the response (output) of the first order system in the time domain.

- ullet Take the Laplace transform of the input signal r(t).
- ullet Consider the equation, $C(s) = \left(rac{1}{sT+1}
 ight)R(s)$
- ullet Substitute R(s) value in the above equation.
- Do partial fractions of C(s) if required.
- Apply inverse Laplace transform to C(s).