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3.3 RICART–AGRAWALA ALGORITHM 

• Ricart–Agrawala algorithm is an algorithm to for mutual exclusion in a distributed 

system proposed by Glenn Ricart and Ashok Agrawala. 

• This algorithm is an extension and optimization of Lamport’s Distributed Mutual 

Exclusion Algorithm. 

• It follows permission based approach to ensure mutual exclusion. 

• Two type of messages ( REQUEST and REPLY) are used and communication 

channels are assumed to follow FIFO order. 

• A site send a REQUEST message to all other site to get their permission to enter 

critical section. 

• A site send a REPLY message to other site to give its permission to enter the critical 

section. 

• A timestamp is given to each critical section request using Lamport’s logical clock. 

• Timestamp is used to determine priority of critical section requests. 

• Smaller timestamp gets high priority over larger timestamp. 

• The execution of critical section request is always in the order of their timestamp. 

Fig 3.2: Ricart–Agrawala algorithm 
 

To enter Critical section: 

• When a site Si wants to enter the critical section, it send a timestamped REQUEST 

message to all other sites. 

• When a site Sj receives a REQUEST message from site Si, It sends a REPLY message 

to site Si if and only if Site Sj is neither requesting nor currently executing the critical 

section. 

• In case Site Sj is requesting, the timestamp of Site Si‘s request is smaller than its own 

request. 

• Otherwise the request is deferred by site Sj. 

 

To execute the critical section: 

Site Si enters the critical section if it has received the REPLY message from all other 

sites. 

To release the critical section: 
Upon exiting site Si sends REPLY message to all the deferred requests. 
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Theorem: Ricart-Agrawala algorithm achieves mutual exclusion. 

Proof: Proof is by contradiction. 

▪ Suppose two sites Si and Sj ‘ are executing the CS concurrently and Si ’s request has 

higher priority than the request of Sj . Clearly, Si received Sj ’s request after it has made 
its own request. 

▪ Thus, Sj can concurrently execute the CS with Si only if Si returns a REPLY to Sj (in 

response to Sj ’s request) before Si exits the CS. 
▪ However, this is impossible because Sj ’s request has lower priority. Therefore, Ricart-

Agrawala algorithm achieves mutual exclusion. 

 
Message Complexity: 

Ricart–Agrawala algorithm requires invocation of 2(N – 1) messages per critical section 

execution. These 2(N – 1) messages involve: 

• (N – 1) request messages 

• (N – 1) reply messages 

Drawbacks of Ricart–Agrawala algorithm: 

• Unreliable approach: failure of any one of node in the system can halt the progress 

of the system. In this situation, the process will starve forever. The problem of failure 

of node can be solved by detecting failure after some timeout. 

Performance: 

Synchronization delay is equal to maximum message transmission time It requires 

2(N – 1) messages per Critical section execution. 

 
3.4 MAEKAWA‘s ALGORITHM 

• Maekawa’s Algorithm is quorum based approach to ensure mutual exclusion in 

distributed systems. 

 

 

Fig 3.3: Maekawa‘s Algorithm 
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• In permission based algorithms like Lamport’s Algorithm, Ricart-Agrawala Algorithm 

etc. a site request permission from every other site but in quorum based approach, a site 

does not request permission from every other site but from a subset of sites which is 

called quorum. 

• Three type of messages ( REQUEST, REPLY and RELEASE) are used. 

• A site send a REQUEST message to all other site in its request set or quorum to get 

their permission to enter critical section. 

• A site send a REPLY message to requesting site to give its permission to enter the 

critical section. 

• A site send a RELEASE message to all other site in its request set or quorum upon 

exiting the critical section 

 

The following are the conditions for Maekawa’s algorithm: 

Maekawa used the theory of projective planes and showed that N = K(K – 1)+ 1. This 

relation gives |Ri|= √N. 

 

To enter Critical section: 

• When a site Si wants to enter the critical section, it sends a request message 

REQUEST(i) to all other sites in the request set Ri. 

• When a site Sj receives the request message REQUEST(i) from site Si, it returns a 

REPLY message to site Si if it has not sent a REPLY message to the site from the 

time it received the last RELEASE message. Otherwise, it queues up the request. 

To execute the critical section: 

• A site Si can enter the critical section if it has received the REPLY message from all the 

site in request set Ri 

To release the critical section: 

• When a site Si exits the critical section, it sends RELEASE(i) message to all other 

sites in request set Ri 

• When a site Sj receives the RELEASE(i) message from site Si, it send REPLY 

message to the next site waiting in the queue and deletes that entry from the queue 

• In case queue is empty, site Sj update its status to show that it has not sent any 

REPLY message since the receipt of the last RELEASE message. 

Correctness 

Theorem: Maekawa’s algorithm achieves mutual exclusion. 

Proof: Proof is by contradiction. 

▪ Suppose two sites Si and Sj are concurrently executing the CS. 
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▪ This means site Si received a REPLY message from all sites in Ri and concurrently 

site Sj was able to receive a REPLY message from all sites in Rj . 

▪ If Ri ∩ Rj = {Sk }, then site Sk must have sent REPLY messages to both Si and Sj 

concurrently, which is a contradiction 

 
Message Complexity: 

Maekawa’s Algorithm requires invocation of 3√N messages per critical section execution as 

the size of a request set is √N. These 3√N messages involves. 

• √N request messages 

• √N reply messages 

• √N release messages 

Drawbacks of Maekawa’s Algorithm: 

This algorithm is deadlock prone because a site is exclusively locked by other sites 

and requests are not prioritized by their timestamp. 

 
Performance: 

Synchronization delay is equal to twice the message propagation delay time. It requires 3√n 

messages per critical section execution. 

 

3.5 SUZUKI–KASAMI‘s BROADCAST ALGORITHM 

• Suzuki–Kasami algorithm is a token-based algorithm for achieving mutual exclusion 

in distributed systems. 

• This is modification of Ricart–Agrawala algorithm, a permission based (Non-token 

based) algorithm which uses REQUEST and REPLY messages to ensure mutual 

exclusion. 

• In token-based algorithms, A site is allowed to enter its critical section if it possesses 

the unique token. 

• Non-token based algorithms uses timestamp to order requests for the critical section 

where as sequence number is used in token based algorithms. 

• Each requests for critical section contains a sequence number. This sequence number 

is used to distinguish old and current requests. 

Fig 3.4: Suzuki–Kasami‘s broadcast algorithm 
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To enter Critical section: 

• When a site Si wants to enter the critical section and it does not have the token then it 

increments its sequence number RNi[i] and sends a request message REQUEST(i, sn) 

to all other sites in order to request the token. 

• Here sn is update value of RNi[i] 

• When a site Sj receives the request message REQUEST(i, sn) from site Si, it sets 

RNj[i] to maximum of RNj[i] and sni.eRNj[i] = max(RNj[i], sn). 

After updating RNj[i], Site Sj sends the token to site Si if it has token and RNj[i] = 

LN[i] + 1 

To execute the critical section: 

• Site Si executes the critical section if it has acquired the token. 

To release the critical section: 

After finishing the execution Site Si exits the critical section and does following: 

• sets LN[i] = RNi[i] to indicate that its critical section request RNi[i] has been executed 

• For every site Sj, whose ID is not prsent in the token queue Q, it appends its ID to Q if 

RNj[j] = LN[j] + 1 to indicate that site Sj has an outstanding request. 

• After above updation, if the Queue Q is non-empty, it pops a site ID from the Q and 

sends the token to site indicated by popped ID. 

• If the queue Q is empty, it keeps the token 

Correctness 

Mutual exclusion is guaranteed because there is only one token in the system and a site holds 

the token during the CS execution. 

Theorem: A requesting site enters the CS in finite time. 

Proof: Token request messages of a site Si reach other sites in finite time. 

Since one of these sites will have token in finite time, site Si ’s request will be placed in the 

token queue in finite time. 

Since there can be at most N − 1 requests in front of this request in the token queue, site Si 

will get the token and execute the CS in finite time. 

 
 

Message Complexity: 

The algorithm requires 0 message invocation if the site already holds the idle token at the 

time of critical section request or maximum of N message per critical section execution. This 

N messages involves 

• (N – 1) request messages 

• 1 reply message 

Drawbacks of Suzuki–Kasami Algorithm: 

• Non-symmetric Algorithm: A site retains the token even if it does not have requested 

for critical section. 

Performance: 

Synchronization delay is 0 and no message is needed if the site holds the idle token at the 

time of its request. In case site does not holds the idle token, the maximum synchronization 

delay is equal to maximum message transmission time and a maximum of N message is 

required per critical section invocation. 
 


