

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MATHEMATICS

UNIT II – FOURIER SERIES

2.3 Harmonic Analysis

The process of finding the Fourier series for a function given by numerical values is known as harmonic analysis.

$$f(x) = \frac{a_0}{1 - \frac{1}{2}} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \text{ where}$$

ie, $f(x) = (a0/2) + (a1 \cos x + b1 \sin x) + (a2 \cos 2x + b2 \sin 2x) + (a3\cos 3x + b3\sin 3x) + \cdots$

Here
$$a_0 = 2$$
 [mean values of $f(x)$] =
$$\frac{2 \sum f(x)}{n}$$

$$a_n = 2$$
 [mean values of $f(x) \cos nx$] = $\frac{2 \sum f(x) \cos nx}{n}$

&
$$b_n = 2$$
 [mean values of $f(x)$ sinnx] = $\frac{2 \sum f(x) \text{ sinnx}}{n}$

In (1), the term $(a1\cos x + b1\sin x)$ is called the **fundamental or first harmonic**, the term $(a2\cos 2x + b2\sin 2x)$ is called the **second harmonic** and so on.

Problem 1.

Compute the first three harmonics of the Fourier series of f(x) given by the following table.

Y. 18.		10	0 10	8000	. 10	- 10	-
X.	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
f(x)	1.0	14	1.9	17	1.5	1.2	1.0

We exclude the last point $x = 2\pi$. Let $f(x) = (a0/2) + (a1 \cos x + b1 \sin x) + (a2 \cos 2x + b2 \sin 2x) + \dots$ To evaluate the coefficients, we form the following table.

X	f(x)	cosx	sinx	cos2x	sin2x	cos3x	sin3x
0	1.0	1	0	1	0	1	0
$\pi/3$	1.4	0.5	0.866	-0.5	0.866	-1	0
$2\pi/3$	1.9	-0.5	0.866	-0.5	-0.866	1	0
π	1.7	-1	0	1	0	-1	0
$4\pi/3$	1.5	-0.5	-0.866	-0.5	0.866	1	0
$5\pi/3$	1.2	0.5	-0.866	-0.5	-0.866	-1	0

Now,
$$a_0 = \frac{2\sum f(x)}{6} = \frac{2(1.0 + 1.4 + 1.9 + 1.7 + 1.5 + 1.2)}{6} = 2.9$$

$$a_1 = \frac{2\sum f(x)\cos x}{6} = -0.37$$

$$a_2 = \frac{2\sum f(x)\cos 2x}{6}$$

$$a_3 = \frac{2\sum f(x)\cos 3x}{6} = 0.033$$

$$b_1 = \frac{2\sum f(x)\sin x}{6}$$

$$b_2 = \frac{2\sum f(x)\sin 2x}{6} = -0.06$$

$$b_3 = \frac{2\sum f(x)\sin 3x}{6} = 0$$

$$\therefore f(x) = 1.45 - 0.37\cos x + 0.17\sin x - 0.1\cos 2x - 0.06\sin 2x + 0.033\cos 3x + \dots$$

Problem 2

Obtain the first three coefficients in the Fourier cosine series for y, where y is given in the following table:

X:	0	1	2	3	4	5
y:	4	8	15	7	6	2
Si.	Taking the	interval as	60°, we have		257	87
θ:	00	60°	120°	180°	240°	300°
X:	0	1	2	3	4	5
v:	4	8	15	7	6	2

 \therefore Fourier cosine series in the interval $(0, 2\pi)$ is $y = (a0/2) + a1\cos\theta + a2\cos 2\theta + a3\cos 3\theta + \dots$

To evaluate the coefficients, we form the following table.

θ_{o}	cosθ	cos2θ	cos3θ	y	y cosθ	y cos2θ	y cos3θ
0°	1	1	1	4	4	4	4
60°	0.5	-0.5	-1	8	4	-4	-8
120°	-0.5	-0.5	1	15	-7.5	-7.5	15
180°	-1	1	-1	7	-7	7	-7
240°	-0.5	-0.5	1	6	-3	-3	6
300°	0.5	-0.5	-1	2	1	-1	-2
	30.	32	Total	42	-8.5	-4.5	8

Now,
$$a0 = 2 (42/6) = 14$$

 $a1 = 2 (-8.5/6) = -2.8$
 $a2 = 2$ $(-4.5/6) =$
 $a3 = 2 (8/6) = 2.7$
 $y = 7 - 2.8 \cos\theta - 1.5 \cos 2\theta + 2.7 \cos 3\theta + \dots$

Problem 3

The values of x and the corresponding values of f(x) over a period T are given below. Show that $f(x) = 0.75 + 0.37 \cos\theta + 1.004 \sin\theta$, where $\theta = (2\pi x)/T$

X:	0	T/6	T/3	T/2	2T/3	5T/6	T
y:	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

We omit the last value since f(x) at x = 0 is known.

Here
$$\theta = 2\pi x / T$$

When x varies from 0 to T, θ varies from 0 to 2π with $2\pi/6$. an incre

Let
$$f(x) = F(\theta) = (a0/2) + a1 \cos\theta + b1 \sin\theta$$
.

To evaluate the coefficients, we form the following table.

θ	у	cosθ	sinθ	y cosθ	y sinθ
0	1.98	1.0	0	1.98	0
$\pi/3$	1.30	0.5	0.866	0.65	1.1258
$2\pi/3$	1.05	-0.5	0.866	-0.525	0.9093
П	1.30	-1	0	-1.3	0
$4\pi/3$	-0.88	-0.5	-0.866	0.44	0.762
$5\pi/3$	-0.25	0.5	-0.866	-0.125	0.2165
	4.6			1.12	3.013

Now, a0 = 2 (
$$\sum f(x)/6$$
)=1.5

$$a_1 = 2(1.12/6) = 0.37$$

$$a2 = 2 (3.013/6) = 1.004$$

Therefore, $f(x) = 0.75 + 0.37 \cos\theta + 1.004 \sin\theta$