SUBSET SUMPROBLEM

The subset-sum problem finds a subset of a given set $A=\{a 1, \ldots, a n\}$ of n positive integers whose sum is equal to a given positive integer d. For example, for $A=$ $\{1,2,5,6,8\}$ and $d=9$, there are two solutions: $\{1,2,6\}$ and $\{1,8\}$. Of course, some instances of this problem may have no solutions.

It is convenient to sort the set's elements in increasing order. So, we will assume that $a 1<a 2<\ldots<a n$.
$A=\{3,5,6,7\}$ and $d=15$ of the subset-sum problem. The number inside a node is the sum of the elements already included in the subsets represented by the node. The inequality below a leaf indicates the reason for its termination.

FIGURE Complete state-space tree of the backtracking algorithm applied to the instance

ALGORITHM Backtrack(X[1..i])

//Gives a template of a generic backtracking algorithm
//Input: $X[1 . . i]$ specifies first i promising components of a solution
//Output: All the tuples representing the problem's solutions
if $X[1 . . i]$ is a solution write $X[1 . . i]$
else //see Problem thissection
for each element $x \in S i+1$ consistent with $X[1 . . i]$ and the constraints do

$$
\begin{aligned}
& X[i+1] \leftarrow \\
& x \\
& \text { Backtrack }(\\
& X[1 . . i+1])
\end{aligned}
$$

General Remarks

From a more general perspective, most backtracking algorithms fit the following escription. An output of a backtracking algorithm can be thought of as an n-tuple (x_{1}, x_{2}, \ldots, x_{n}) where each coordinate $x i$ is an element of some finite lin early ordered set Si . For example, for the n-queens problem, each $S i$ is the set of integers (column numbers) 1 through n.

A backtracking algorithm generates, explicitly or implicitly, a state-space tree; its nodes represent partially constructed tuples with the first i coordinates defined by the earlier actions of the algorithm. If such a tuple ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}}$) is not a solution, the algorithm finds the next element in S_{i+1} that is consistent with the values of $\left(\left(x_{1}, x_{2}, \ldots\right.\right.$, x_{i}) and the problem's constraints, and adds it to the tuple as its ($\mathrm{i}+1$)st coordinate. If such an element does not exist, the algorithm backtracks to consider the next value of xi, and soon.

