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UNIT I ROLE OF ALGORITHMS IN COMPUTING & COMPLEXITY 

ANALYSIS            

Algorithms – Algorithms as a Technology – Time and Space complexity of 

algorithms – Asymptotic analysis – Average and worst-case analysis – Asymptotic notation 

– Importance of efficient algorithms – Program performance measurement – Recurrences: 

The Substitution Method – The Recursion – Tree Method – Data structures and algorithms. 

 
 

RECURRENCES: THE SUBSTITUTION METHOD 
The substitution method comprises two steps: 

1. Guess the form of the solution using symbolic constants. 

2. Use mathematical induction to show that the solution works, and ûnd the 

constants. 

We substitute the guessed solution for the function on smaller values 

hence the name is the substitution method. This method is powerful, but we 

must guess the form of the answer. We can use the substitution method to 

establish either an upper or a lower bound on a recurrence. It’s usually best 

not to try to do both at the same time. That is, rather than trying to prove a‚ 

Θ bound directly, first prove an O-bound, and then prove an Ω-bound. As an 

example of the substitution method, let’s determine an asymptotic upper 

bound on the recurrence: 

𝑇(𝑇)  =  2𝑇(⌊𝑇/2⌋)  + 𝑇(𝑇)  

This recurrence is similar to recurrence for merge sort, except for the 

floor function, which ensures that T(n) is defined over the integers. Let’s 

guess that the asymptotic upper bound is the same - T(n) D = O(n lg n) and 

use the substitution method to prove it. 

 

RECURRENCES: THE RECURSION-TREE METHOD 

 
1) Substitution Method: We make a guess for the solution and then we use 

mathematical induction to prove the guess is correct or incorrect. 

For example consider the recurrence T(n) = 2T(n/2) + n 

We guess the solution as T(n) = O(nLogn). Now we use induction to 

prove our guess. We need to prove that T(n) <= cnLogn. We can assume that 

it is true for values smaller than n. 

 

T(n) = 2T(n/2) + n 
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<= 2cn/2Log(n/2) + n 

= cnLogn - cnLog2 + n 

= cnLogn - cn + n 

<= cnLogn 

 

Master Method: Master Method is a direct way to get the solution. The 

master method works only for following type of recurrences or for 

recurrences that can be transformed to following type. 

T(n) = aT(n/b) + f(n) where a >= 1 and b > 1 

There are following three cases: 

If f(n) = O(nc) where c < Logba then T(n) = Θ(nLogba) 

If f(n) = Θ(nc) where c = Logba then T(n) = Θ(ncLog n) 

How does this work? 

Master method is mainly derived from recurrence tree method. If we 

draw recurrence tree of T(n) = aT(n/b) + f(n), we can see that the work done 

at root is f(n) and work done at all leaves is Θ(nc) where c is Logba. And the 

height of recurrence tree is Logbn 

 

 

 

 

In recurrence tree method, we calculate total work done. If the work 

done at leaves is polynomially more, then leaves are the dominant part, and 

our result becomes the work done at leaves (Case 1). If work done at leaves 

and root is asymptotically same, then our result becomes height multiplied 

by work done at any level (Case 2). If work done at root is asymptotically 
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more, then our result becomes work done at root (Case 3). 

 

Examples of some standard algorithms whose time complexity can be 

evaluated using Master Method 

Merge Sort: T(n) = 2T(n/2) + Θ(n). It falls in case 2 as c is 1 and 

Logba] is also 1. So the solution is 

Θ(n Logn) 

Binary Search: T(n) = T(n/2) + Θ(1). It also falls in case 2 as c is 0 

and Logba is also 0. So the 

solution is Θ(Logn) 

Notes: 

It is not necessary that a recurrence of the form T(n) = aT(n/b) + f(n) 

can be solved using Master Theorem. The given three cases have some gaps 

between them. For example, the recurrence T(n) = 2T(n/2) + n/Logn cannot 

be solved using master method. 

Case 2 can be extended for f(n) = Θ(ncLogkn) 

If f(n) = Θ(ncLogkn) for some constant k >= 0 and c = Logba, then 

T(n) = Θ(ncLogk+1n) 

 

The Recursion- Tree Method 

 

Recursion Tree Method is a pictorial representation of an iteration 

method which is in the form of a tree where at each level nodes are expanded. 

In general, we consider the second term in recurrence as root.It is 

http://geeksquiz.com/merge-sort/
http://geeksquiz.com/binary-search/
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useful when the divide & Conquer algorithm is used. It is sometimes difficult 

to come up with a good guess. In the Recursion tree, each root and child 

represents the cost of a single subproblem. We sum the costs within each of 

the levels of the tree to obtain a set of pre-level costs and then sum all pre-

level costs to determine the total cost of all levels of the recursion. A 

Recursion Tree is best used to generate a good guess, which can be verified 

by the Substitution Method. 

Example 1 

 

 

Consider T (n) = 2T + n2 

We have to obtain the asymptotic bound using recursion tree method. 

Solution: The Recursion tree for the above recurrence is 

 

 
 

Recurrence Tree Method: In this method, we draw a recurrence tree 

and calculate the time taken by every level of tree. Finally, we sum the work 
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done at all levels. To draw the recurrence tree, we start from the given 

recurrence and keep drawing till we find a pattern among levels. The pattern 

is typically a arithmetic or geometric series. 

 

 

For example consider the recurrence relation T(n) = T(n/4) + T(n/2) 

+ cn2 

 

cn2 

/ \ 

T(n/4) T(n/2) 

 

If we further break down the expression T(n/4) and T(n/2), we get 

following recursion tree. 

 

cn2 

/ \ 

c(n2)/16 c(n2)/4 

/ \ / \ 

T(n/16) T(n/8) T(n/8) T(n/4) 

Breaking down further gives us following cn2 

/ \ 

c(n2)/16 c(n2)/4 

/ \ / \ 

c(n2)/256 c(n2)/64  c(n2)/64 c(n2)/16 

/ \ / \ / \ / \ 

 

To know the value of T(n), we need to calculate the sum of tree nodes 

level by level. If we sum the above tree level by level, we get the following 

series 

T(n) = c(n^2 + 5(n^2)/16 + 25(n^2)/256) + .... 

The above series is geometric progression with ratio 5/16. 

To get an upper bound, we can sum the infinite series. We get the sum 

as (n2)/(1 - 5/16) which is O(n2) 

 
 


