ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY Approved by AICTE \& Affliated to anna university Accredited with A $^{+}$grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERING

NAME OF THE SUBJECT: ENGINEERING MECHANICS	
SUBJECT CODE	: ME3351
REGULATION	2021

UNIT V: FRICTION

TYPES OF FRICTION

The friction force is the resisting force developed at the contact surface of two bodies due to their roughness and when the surface of one body moves over the surface of an another body.

Some of important Engg application of simple contact friction are,

- Ladder friction
- Wedge friction
- Screw friction
- Belt friction

1. Ladder friction:

A ladder is a device used for climbing on roof or wall
Consider a ladder AB of length ' l ' and weight ' w ' resting on the ground at A and leaning against a rough wall at B as shown in fig.

Let the angle of ladder with horizontal be θ when the angle θ exceeds angle of friction (or) when the weight of the man on the ladder makes instability to the ladder, the ladder slips down.

During sliding the upper end of the ladder tends to slip downwards, hence the friction force at B, F_{B} will act upwards. If the coefficient of friction of wall surface B is μ_{B}

Then $\mu_{B}=\frac{F_{B}}{N_{R B}} \quad$ (or) $F_{B}=\mu_{B} N_{R B}$

At the same time the lower end of the ladder A tends to slip away from the wall, hence the frictional force at A, F_{A} will act towards the wall if the coefficient of friction of floor surface A is μ_{A}

$$
\mu_{A}=\frac{F_{A}}{N_{R A}} \quad \text { (or) } F_{A}=\mu_{A} N_{R A}
$$

Condition:

$$
\begin{aligned}
& \Sigma F_{X}=0 \\
& \Sigma F_{Y}=0 \\
& \Sigma M=0 \\
& F=\mu N_{R}
\end{aligned}
$$

Problem 1:

A ladder is 8 m long and weight 300 N . The center of gravity of the ladder is 3 m along the length of from the bottom end. The ladder rests against a vertical wall at B and on the horizontal floor at A as shown below. Determine the safe height upto which a man weighting 900 N can climb without making the ladder slip. The coefficient of friction b / w ladder and floor is 0.4 and ladder top and wall is 0.3

Given:
Length of ladder $1=8 \mathrm{~m}$
Weight of ladder $w=300 \mathrm{~N}$ at 3 m length from lower end
$\mu_{A}=0.4$
$\mu_{B}=0.3$

To find

Safe height ' H '

Soln:
Free body diagram

Sum of X direction force $\Sigma F_{X}=0$
$F_{A}-N_{R B}=0$
$F_{A}-N_{R B}-------------(1)$
Sum of Y direction force $\Sigma F_{y}=0$
$N_{R A}+F_{B}-300-900=0$
$N_{R A}+F_{B}=300+900=0$
$N_{R A}+F_{B}=1200--------------(2)$
$\Sigma M_{A}=0$ Moment about ' A '
Now find out the θ
$\theta=\cos ^{-1}\left(\frac{5}{8}\right)$
$\theta=51^{\circ} 19^{\prime}$
$\Sigma M_{A}=0 \quad \uparrow_{-} \downarrow_{+}$
$(300 \times 3 \cos \theta)+(900 \times \cos \theta)+\left[F_{B} \times 5\right]+\left[-N_{R B} \times 8 \sin \theta\right]=0$
$\left[300 \times 3 \cos 51^{\circ} 19^{\prime}\right]+\left[900 \times \cos 51^{\circ} 19^{\prime}\right]+\left[-F_{B} \times 5\right]+\left[-N_{R B} \times \sin 51^{\circ} 19^{\prime}\right.$ $=0$
$\operatorname{Sub} F_{B}=\mu N_{R B}=0.3 N_{R B}$

$$
\begin{gathered}
{\left[300 \times 3 \cos 51^{\circ} 19^{\prime}\right]+\left[900 \times \cos 51^{\circ} 19^{\prime}\right]+\left[-0.3 N R_{B} \times 5\right]} \\
+\left[-N_{R B} \times 8 \sin 51^{\circ} 19^{\prime}=0\right.
\end{gathered}
$$

$562.51+562.51 \times-1.5 N_{R B}-6.24 N_{R B}=0$
$562.51+562.21 \times-7.74 N_{R B}=0$
To find $N_{R B}$
From eqn (2)
$N_{R A}+F_{B}=1200--------------(2)$
$\underline{F_{A}}+0.3 \times N_{R B}=1200$
$\frac{0.4}{N_{R B}}+0.3 \times N_{R B}=1200$
$2.5 N_{R B}+0.3 N_{R B}=1200$
$2.8 N_{R B}=1200$
$N_{R B}=\frac{1200}{2.8}$
$N_{R B}=428.57 \mathrm{~N}$
$N_{R B}$ value sub in Eqn(3)
$562.51+562.51 \times-7.74 N_{R B}=0$
$562.51+562.51 \times-7.74 \times 428.57=0$
$562.51 \times=[7.74 \times 428.57]-[562.51]$
562.51×2754.63
$X=\frac{2754.63}{562.51}$
Ans $X=4.89 \mathrm{mfrom}$ the floor of Ladder
Problem 2
A ladder of weight 1000 N and length 4 m rest as shown in fig. if the 750 n weight is applied at distance of 3 m from the top of ladder, it is at the point of sliding. Determine the coefficient of friction b / w ladder and the floor.

Given:
Length of Ladder $1=4 \mathrm{~m}$
Weight of ladder $w=1000 \mathrm{~N}$
Weight of man $=750 \mathrm{~N}$ at 3 m from toped
To find:
Coefficient of friction
Soln:
Free body diagram

Sum of X direction force $\Sigma F_{X}=0$
$N_{R B}-F_{N A}=0$
$N_{R B}-\mu_{A} N=0$
$-\mu_{A} N_{R A}=-N_{R B}$
$\mu_{A}=\frac{N_{R B}}{N_{R A}}$
Sum of all Y direction force

$$
\begin{aligned}
& N_{R A}-1000-750=0 \\
& N_{R A}-1750=0 \\
& N_{R A}=1750 N
\end{aligned}
$$

Take moment about ' A '

$\Sigma M_{A}=0$
$\Sigma M_{A}=\left[N_{R B} \times B C\right]+[-1000 \times A D]+[-750 \times A E]=0$
$B C=4 \sin 6 \quad A D=2 \cos 60 A E=-1 \cos 60$
$\left[N_{R B} \times 4 \sin 60\right]+[-1000 \times 2 \cos 60]+[-750 \times-1 \cos 60]=0$
$3.46 N_{R B}-1000-375=0$
$3.46 N_{R B}-1375=0$
$N_{R B}=\frac{1375}{3.46}$
$N_{R B}=397.39 \mathrm{~N}$
$N_{R A} \& N_{R B}$ value sub in Eqn (1)
$\mu=\frac{N_{R B}}{N_{R A}}=\frac{397.39}{1750}$
ans $\mu=0.22$

