
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

2.6 Method Overriding
 When a method in a subclass has the same name and type signature as a method in

its superclass, then the method in subclass is said to override a method in the
superclass.

Example:

class Bank

{
int getRateOfInterest()// super class method
{
return 0;
}
}
class Axis extends Bank// subclass of bank
{
int getRateOfInterest()// overriding the superclass method
{
return 6;
}
}
class ICICI extends Bank// subclass of Bank
{

int getRateOfInterest()// overriding the superclass method
{
return 15;
}
}
// Mainclass
class BankTest
{
public static void main(String[] a)
{
Axis a=new Axis();
ICICI i=new ICICI();
// following method call invokes the overridden method of subclass AXIS

System.out.println(“AXIS: Rate of Interest = “+a.getRateOfInterest());
// following method call invokes the overridden method of subclass ICICI

System.out.println(“ICICI: Rate of Interest = “+i.getRateOfInterest());
}
}

Output:
Z:\> java BankTest

AXIS: Rate of Interest = 6
ICICI: Rate of Interest = 15

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 RULES FOR METHOD OVERRIDING:

 The method signature must be same for all overridden methods.
 Instance methods can be overridden only if they are inherited by the subclass.
 A method declared final cannot be overridden.
 A method declared static cannot be overridden but can be re-declared.
 If a method cannot be inherited, then it cannot be overridden.
 Constructors cannot be overridden.

 ADVANTAGE OF JAVA METHOD OVERRIDING

 Method Overriding is used to provide specific implementation of a method that is
already provided by its super class.

 Method Overriding is used for Runtime Polymorphism

Dynamic method dispatch is the mechanism by which a call to an overridden
method is resolved at run time, rather than compile time. Dynamic method dispatch
is important because this is how Java implements run-time polymorphism.

Example that illustrate dynamic method dispatch:

class A {
void callme() {
System.out.println(“Inside A’s callme method”);
}
}
class B extends A {
//override callme()

void callme() {
System.out.println(“Inside B’s callme method”);
} }

class C extends A
{
//override callme()

void callme() {
System.out.println(“Inside C’s callme method”);
}
}

class Dispatch
{
public static void main(String args[])
{

2.7: DYNAMIC METHOD DISPATCH

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

A a=new A(); //object of type A
B b=new B(); //object of type B
C c=new C(); //object of type C
A r;// obtain a reference of type A

r = a; // r refers to an A object // dynamic method dispatch
r.callme();// calls A’s version of callme()

r = b;// r refers to an B object
r.callme();// calls B’s version of callme()

r = c;// r refers to an C object
r.callme();// calls C’s version of callme()
}
}

The output from the program is shown here:
Inside A's callme method
Inside B's callme method
Inside C's callme method

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 DIFFERENCE BETWEEN METHOD OVERLOADING AND METHOD OVERRIDING IN
JAVA:

Method Overloading Method Overriding

Definition

In Method Overloading,
Methods of the same class
shares the same name but each
method must have different
number of parameters or
parameters having different
types and order.

In Method Overriding, sub
class have the same method
with same name and exactly
the same number and type of
parameters and same return
type as a super class.

Meaning

Method Overloading means
more than one method shares
the same name in the class but
having different signature.

Method Overriding means
method of base class is re-
defined in the derived class
having same signature.

Behavior

Method Overloading is to “add”
or “extend” more to method’s
behavior.

Method Overriding is to
“Change” existing behavior of
method.

Overloading and Overriding is a kind of polymorphism. Polymorphism means “one
name, many forms”.

Polymorphism
It is a compile time

polymorphism.

It is a run time

polymorphism.

Inheritance

It may or may not need
inheritance in Method
Overloading.

It always requires inheritance
in Method Overriding.

Signature

In Method Overloading,
methods must have different
signature.

In Method Overriding,
methods must have same
signature.

Relationship of

Methods

In Method Overloading,
relationship is there between
methods of same class.

In Method Overriding,
relationship is there between
methods of super class and
sub class.

No. of Classes

Method Overloading does not
require more than one class for
overloading.

Method Overriding requires
at least two classes for
overriding.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Example

Class Add

{

int sum(int a, int b)

{

return a + b;

}

int sum(int a)

{

return a + 10;

}

}

Class A // Super Class

{

void display(int num)

{

print num ;

}

}

//Class B inherits Class A
Class B //Sub Class
{

void display(int num)

{

print num ;

}

}

 Abstraction:

Abstraction is a process of hiding the implementation details and showing only
the essential features to the user.

 For example sending sms, you just type the text and send the message. You don't
know the internal processing about the message delivery.

 Abstraction lets you focus on what the object does instead of how it does it.

 Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)
2. Interface (100%)

 Abstract Classes:

2.8: ABSTRACT CLASSES

A class that is declared as abstract is known as abstract class. Abstract classes

cannot be instantiated, but they can be subclassed.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Syntax to declare the abstract class:

 Abstract classes are used to provide common method implementation to all the

subclasses or to provide default implementation.

Properties of abstract class:

 abstract keyword is used to make a class abstract.
 Abstract class can’t be instantiated.
 If a class has abstract methods, then the class also needs to be made abstract

using abstract keyword, else it will not compile.
 Abstract classes can have both concrete methods and abstract methods.
 The subclass of abstract class must implement all the abstract methods unless

the subclass is also an abstract class.
 A constructor of an abstract class can be defined and can be invoked by the

subclasses.
 We can run abstract class like any other class if it has main() method.

Example:

abstract class GraphicObject {
int x, y;
...
void moveTo(int newX, int newY) {

...
}
abstract void draw();
abstract void resize();

}

 Abstract Methods:

abstract class <class_name>

{

Member variables;

Concrete methods { }

Abstract methods();

}

A method that is declared as abstract and does not have implementation is

known as abstract method. It acts as placeholder methods that are

implemented in the subclasses.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Syntax to declare a abstract method:

 Abstract methods are used to provide a template for the classes that inherit the

abstract methods.

Properties of abstract methods:

 The abstract keyword is also used to declare a method as abstract.
 An abstract method consists of a method signature, but no method body.
 If a class includes abstract methods, the class itself must be declared abstract.
 Abstract method would have no definition, and its signature is followed by a

semicolon, not curly braces as follows:
public abstract class Employee {

private String name;
private String address;
private int number;
public abstract double computePay();
//Remainder of class definition

}

 Any child class must either override the abstract method or declare itself
abstract.

abstract class shape
{

int x, y;
abstract void printArea();

}

class Rectangle extends shape
{
void printArea()
{

System.out.println("Area of Rectangle is " + x * y);

abstract class classname

{

abstract return_type <method_name>(parameter_list);//no braces{}

// no implementation required

……..

}

Write a Java program to create an abstract class named Shape that contains 2

integers and an empty method named PrintArea(). Provide 3 classes named

Rectangle, Triangle and Circle such that each one of the classes extends the

class Shape. Each one of the classes contain only the method PrintArea() that

prints the area of the given shape.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

}
}
class Triangle extends shape
{
void printArea()
{
System.out.println("Area of Triangle is " + (x * y) / 2);
}
}
class Circle extends shape
{
void printArea()
{

System.out.println("Area of Circle is " + (22 * x * x) / 7);
}
}
class abs
{
public static void main(String[] args)
{
Rectangle r = new Rectangle();
r.x = 10;
r.y = 20;
r.printArea();

System.out.println(" -- ");

Triangle t = new Triangle();
t.x = 30;
t.y = 35;
t.printArea();

System.out.println(" -- ");
Circle c = new Circle();
c.x = 2;
c.printArea();

System.out.println(" -- ");
}
}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Output:

D:\>javac abs.java
D:\>java abs
Area of Rectangle is 200
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
Area of Triangle is 525
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
Area of Circle is 12
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -

What is final keyword in Java?

Final is a keyword or reserved word in java used for restricting some
functionality. It can be applied to member variables, methods, class and local
variables in Java.

 final keyword has three uses:
1. For declaring variable – to create a named constant. A final variable

cannot be changed once it is initialized.
2. For declaring the methods – to prevent method overriding. A final

method cannot be overridden by subclasses.
3. For declaring the class – to prevent a class from inheritance. A final

class cannot be inherited.

1. Final Variable:

Any variable either member variable or local variable (declared inside method or
block) modified by final keyword is called final variable.

 The final variables are equivalent to const qualifier in C++ and #define directive

in C.
 Syntax:

 Example:

final int MAXMARKS=100;
final int PI=3.14;

 The final variable can be assigned only once.
 The value of the final variable will not be changed during the execution of the
program. If an attempt is made to alter the final variable value, the java compiler will

2.9: final WITH INHERITANCE

 final data_type variable_name = value;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

throw an error message.

There is a final variable speedlimit, we are going to change the value of this

variable, but It can't be changed because final variable once assigned a value can never
be changed.

NOTE: Final variables are by default read-only.

2. Final Methods:
 Final keyword in java can also be applied to methods.
 A java method with final keyword is called final method and it cannot be

overridden in sub-class.
 If a method is defined with final keyword, it cannot be overridden in the

subclass and its behaviour should remain constant in sub-classes.
 Syntax:

 Example of final method in Java:

1. class Bike
2. {
3. final int speedlimit=90;//final variable
4. void run()
5. {
6. speedlimit=400;
7. }
8. public static void main(String args[])
9. {
10. Bike obj=new Bike();
11. obj.run();
12. }
13.}

 Output: Compile Time Error

final return_type function_name(parameter_list)

{

// method body

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

3. Final Classes:

 Java class with final modifier is called final class in Java and they cannot
be sub-classed or inherited.

 Syntax:

 Several classes in Java are final e.g. String, Integer and other wrapper classes.

1. class Bike
2. {
3. final void run()
4. {
5. System.out.println("running");
6. }
7. }
8. class Honda extends Bike
9. {
10. void run()
11. {
12. System.out.println("running safely with 100kmph");
13. }
14. public static void main(String args[])
15. {
16. Honda honda= new Honda();
17. honda.run();
18. }
19.}

Output:

D:\>javac Honda.java
Honda.java:9: error: run() in Honda cannot override run() in Bike

void run()
^

overridden method is final
1 error

final class class_name

{

// body of the class

}

http://javarevisited.blogspot.com/2011/10/class-in-java-programming-general.html

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Example of final class in java:

Points to Remember:

1) A constructor cannot be declared as final.
2) Local final variable must be initializing during declaration.
3) All variables declared in an interface are by default final.
4) We cannot change the value of a final variable.
5) A final method cannot be overridden.
6) A final class cannot be inherited.
7) If method parameters are declared final then the value of these parameters

cannot be changed.
8) It is a good practice to name final variable in all CAPS.
9) final, finally and finalize are three different terms. finally is used in exception

handling and
10) finalize is a method that is called by JVM during garbage collection.

Output:

D:\>javac Honda.java

Honda.java:4: error: cannot inherit from final Bike class Honda extends Bike

^

1 error

1. final class Bike

2. {

3. }

4. class Honda1 extends Bike

5. {

6. void run()

7. {

8. System.out.println("running safely with 100kmph");

9. }

10. public static void main(String args[])

11. {

12. Honda1 honda= new Honda1();

13. honda.run();

14. }

15. }

	Example:
	Output:
	Z:\> java BankTest
	 RULES FOR METHOD OVERRIDING:
	 ADVANTAGE OF JAVA METHOD OVERRIDING
	Example that illustrate dynamic method dispatch:
	 DIFFERENCE BETWEEN METHOD OVERLOADING AND METHOD OVERRIDING IN JAVA:
	 Abstraction:
	 Ways to achieve Abstraction
	 Abstract Classes:
	 Syntax to declare the abstract class:
	Properties of abstract class:
	Example: (1)
	 Abstract Methods:
	 Syntax to declare a abstract method:
	Properties of abstract methods:
	Output: (1)
	What is final keyword in Java?
	 Java class with final modifier is called final class in Java and they cannot be sub-classed or inherited.
	 Example of final class in java:

