
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 BINARY SEARCH TREE

 In a Binary search tree, the value of left node must be smaller than the parent node,

and the value of right node must be greater than the parent node. This rule is

applied recursively to the left and right subtrees of the root.

 Example for Binary Search Tree

 In the above figure, we can observe that the root node is 40, and all the nodes of

the left subtree are smaller than the root node, and all the nodes of the right subtree

are greater than the root node.

 Similarly, we can see the left child of root node is greater than its left child and

smaller than its right child. So, it also satisfies the property of binary search tree.

Therefore, we can say that the tree in the above image is a binary search tree.

 Advantages of Binary search tree

 Searching an element in the Binary search tree is easy as we always have a

hint that which subtree has the desired element.

 As compared to array and linked lists, insertion and deletion operations are

faster in BST.

 Example of creating a binary search tree

 Now, let's see the creation of binary search tree using an example. Suppose

the data elements are : 45, 15, 79, 90, 10, 55, 12, 20, 50

o First, we have to insert 45 into the tree as the root of the tree.

o Then, read the next element; if it is smaller than the root node, insert it as the

root of the left subtree, and move to the next element.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

o Otherwise, if the element is larger than the root node, then insert it as the root

of the right subtree.

 Now, let's see the process of creating the Binary search tree using the given

data element. The process of creating the BST is shown below

 Step 1 - Insert 45.

 Step 2 - Insert 15.

o As 15 is smaller than 45, so insert it as the root node of the left subtree.

 Step 3 - Insert 79.

o As 79 is greater than 45, so insert it as the root node of the right subtree.

 Step 4 - Insert 90.

o 90 is greater than 45 and 79, so it will be inserted as the right subtree of 79.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Step 5 - Insert 10

o 10 is smaller than 45 and 15, so it will be inserted as a left subtree of 15.

 Step 6 - Insert 55

o 55 is larger than 45 and smaller than 79, so it will be inserted as the left subtree

of 79.

 Step 7 - Insert 12

o 12 is smaller than 45 and 15 but greater than 10, so it will be inserted as the

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

right subtree of 10.

 Step 8 - Insert 20

o 20 is smaller than 45 but greater than 15, so it will be inserted as the right

subtree of 15.

 Step 9 - Insert 50.

o 50 is greater than 45 but smaller than 79 and 55. So, it will be inserted as a

left subtree of 55.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Now, the creation of binary search tree is completed.

 Operations performed on a Binary Search Tree

 We can perform insert, delete and search operations on the binary search tree.

 Searching in Binary search tree

 Searching means to find or locate a specific element or node in a data structure.

In Binary search tree, searching a node is easy because elements in BST are stored

in a specific order.

 Steps involved in Searching in a Binary Search Tree

 First, compare the element to be searched with the root element of the tree.

 If root is matched with the target element, then return the node's location.

 If it is not matched, then check whether the item is less than the root element, if it

is smaller than the root element, then move to the left subtree.

 If it is larger than the root element, then move to the right subtree.

 Repeat the above procedure recursively until the match is found.

 If the element is not found or not present in the tree, then return NULL.

 Now, let's understand the searching in binary tree using an example. We are

taking the binary search tree formed above. Suppose we have to find node 20

from the below tree.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Step1:

Step2:

Step3:

 Algorithm to search an element in Binary search tree

Search (root, item)

Step 1 - if (item = root → data) or (root = NULL)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

return root

else if (item < root → data)

return Search(root → left, item)

else

return Search(root → right, item)

END if

Step 2 - END

 Deletion in Binary Search tree

 In a binary search tree, we must delete a node from the tree by keeping in mind

that the property of BST is not violated. To delete a node from BST, there are

three possible situations occur -

 The node to be deleted is the leaf node, or,

 The node to be deleted has only one child, and,

 The node to be deleted has two children

 When the node to be deleted is the leaf node

 It is the simplest case to delete a node in BST. Here, we have to replace the leaf

node with NULL and simply free the allocated space.

 We can see the process to delete a leaf node from BST in the below image. In

below image, suppose we have to delete node 90, as the node to be deleted is a

leaf node, so it will be replaced with NULL, and the allocated space will free.

 When the node to be deleted has only one child

 In this case, we have to replace the target node with its child, and then delete the

child node. It means that after replacing the target node with its child node, the

child node will now contain the value to be deleted. So, we simply have to replace

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

the child node with NULL and free up the allocated space.

 We can see the process of deleting a node with one child from BST in the below

image. In the below image, suppose we have to delete the node 79, as the node to

be deleted has only one child, so it will be replaced with its child 55.

 So, the replaced node 79 will now be a leaf node that can be easily deleted.

 When the node to be deleted has two children

 This case of deleting a node in BST is a bit complex among other two cases. In

such a case, the steps to be followed are listed as follows -

o First, find the inorder successor of the node to be deleted.

o After that, replace that node with the inorder successor until the target node

is placed at the leaf of tree.

o And at last, replace the node with NULL and free up the allocated space.

 The inorder successor is required when the right child of the node is not empty.

We can obtain the inorder successor by finding the minimum element in the right

child of the node.

 We can see the process of deleting a node with two children from BST in the

below image.

 In the below image, suppose we have to delete node 45 that is the root node, as

the node to be deleted has two children, so it will be replaced with its inorder

successor. Now, node 45 will be at the leaf of the tree so that it can be deleted

easily.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Insertion in Binary Search tree

 A new key in BST is always inserted at the leaf. To insert an element in BST,

we have to start searching from the root node; if the node to be inserted is less

than the root node, then search for an empty location in the left subtree.

 Else, search for the empty location in the right subtree and insert the data. Insert

in BST is similar to searching, as we always have to maintain the rule that the left

subtree is smaller than the root, and right subtree is larger than the root.

 The complexity of the Binary Search tree

 Let's see the time and space complexity of the Binary search tree. We will see the

time complexity for insertion, deletion, and searching operations in best case,

average case, and worst case.

 Implementation of Binary search tree

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

#include <iostream>

using namespace

std; struct Node {

int data;

Node *left;

Node *right;

};

Node* create(int item)

{

Node* node = new

Node; node->data = item;

node->left = node->right = NULL;

return node;

}

/*Inorder traversal of the tree formed*/

void inorder(Node *root)

{

if (root == NULL)

return;

inorder(root->left); //traverse left subtree

cout<< root->data << " "; //traverse root node

inorder(root->right); //traverse right subtree

}

Node* findMinimum(Node* cur) /*To find the inorder successor*/

{

while(cur->left != NULL) {

cur = cur->left;

}

return cur;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

}

Node* insertion(Node* root, int item) /*Insert a node*/

{

if (root == NULL)

return create(item); /*return new node if tree is empty*/

if (item < root->data)

root->left = insertion(root->left, item);

else

root->right = insertion(root->right, item);

return root;

}

void search(Node* &cur, int item, Node* &parent)

{

while (cur != NULL && cur->data != item)

{

parent = cur;

if (item < cur->data)

cur = cur->left;

else

cur = cur->right;

}

}

void deletion(Node*& root, int item) /*function to delete a node*/

{

Node* parent = NULL;

Node* cur = root;

search(cur, item, parent); /*find the node to be deleted*/

if (cur == NULL)

return;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

if (cur->left == NULL && cur->right == NULL) /*When node has no

children*/

{

if (cur != root)

{

if (parent->left == cur)

parent->left = NULL;

else

parent->right = NULL;

}

else

root = NULL;

free(cur);

}

else if (cur->left && cur->right)

{

Node* succ = findMinimum(cur->right);

int val = succ->data;

deletion(root, succ-

>data); cur->data = val;

}

else

{

Node* child = (cur->left)? cur->left: cur->right;

if (cur != root)

{

if (cur == parent-

>left) parent->left =

child;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

else

parent->right = child;

}

else

root = child;

free(cur);

}

}

int main()

{

Node* root = NULL;

root = insertion(root,

45); root = insertion(root,

30); root = insertion(root,

50); root = insertion(root,

25); root = insertion(root,

35); root = insertion(root,

45); root = insertion(root,

60); root = insertion(root,

4);

printf("The inorder traversal of the given binary tree is - \n");

inorder(root);

deletion(root, 25);

printf("\nAfter deleting node 25, the inorder traversal of the given binary tree is

- \n");

inorder(root);

insertion(root, 2);

printf("\nAfter inserting node 2, the inorder traversal of the given binary tree is

- \n");

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

inorder(root);

return 0;

}

Output

	BINARY SEARCH TREE
	Advantages of Binary search tree
	Example of creating a binary search tree
	Operations performed on a Binary Search Tree
	Searching in Binary search tree
	Steps involved in Searching in a Binary Search Tree
	Step1:

	Algorithm to search an element in Binary search tree
	Deletion in Binary Search tree
	When the node to be deleted is the leaf node
	When the node to be deleted has only one child
	When the node to be deleted has two children
	Insertion in Binary Search tree
	The complexity of the Binary Search tree
	Implementation of Binary search tree

