5.4 SOLUTION OF STATE EQUATIONS

Solution of homogeneous state equations (solution of state equations without input or excitation)

Consider a first order differential equation, with initial condition, $\mathrm{x}(0)=\mathrm{x} 0$.

$$
=a x ; \%(0)=x_{0}
$$

On rearranging equation we get $\stackrel{\mathrm{ctx}}{=} a d t$ integrating the equation we get, 1 ogx $=a \mathrm{t}-$

$$
\mathrm{X}=3^{\left(\mathrm{dtu} \mathrm{I}^{-c}\right)}=\mathrm{e}^{\mathrm{dt}} Q_{c}
$$

When $\mathrm{t}=0, \mathrm{x}-\mathrm{x}(0)-e^{c}$
Given that, $\mathrm{x}(0)-\mathrm{X}_{0} \bullet \mathrm{e}^{\mathrm{c}}-\mathrm{X}_{0}$
The solution of first order differential equation as,

$$
x=e^{a t} x_{0}
$$

We know that, $\mathrm{e}^{\mathrm{x}}-\underset{\mathrm{L}}{\left[1-\mathrm{x}-\mathrm{x}^{2}-\mathrm{x}^{2}-\mathrm{I}-\mathrm{X}^{\mathrm{r}}\right]}$

$$
\mathrm{x}-\mathrm{r}\left[1-a \mathrm{t} \stackrel{\mathrm{i}}{-}-(\mathrm{a} \mathrm{t})^{2}-\stackrel{1-\mathrm{i}}{-}(\mathrm{a} t) \mathrm{X}_{0}\right.
$$

Consider the state equations without input vector,
$X(t)-\mathrm{AX}(\mathrm{t}) ; \mathrm{x}(0)=\mathrm{X} 0$.
The solution of the matrix or vector equation can be assumed

$$
\mathrm{X}(\mathrm{t})-\mathrm{A} o-\mathrm{A}-\mathrm{t}-\mathrm{A} 2 \mathrm{t}^{2}-\cdots
$$

Where $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots$.Aiare matrices and the elements of the matrices are constant.

$$
\mathrm{X}(\mathrm{t})-\left[/-\mathrm{At}+{ }_{2!} \mathrm{A}^{2 \mathrm{t}^{2}}-{ }^{\wedge} \mathrm{A}^{3 \mathrm{t}^{3}}-\ldots{ }^{\wedge} \mathrm{A} \mathrm{td} \mathrm{~A}\right.
$$

Where I is the unit matrix.
Matrix exponential may be written as,

$$
2!I+A t+{ }^{\wedge} A t^{2}+\frac{1 A 3^{3}}{3!} A t^{3}+\cdots{ }_{\mathrm{i}!}^{1{ }_{A} i j}
$$

Hence the solution of the state equation is () The matrix $e^{A \mathrm{c}}$ is alled state transition matrix and denoted by $\mathrm{p}(\mathrm{t})$.

PROPERTIES OF STATE TRANSITION MATRIX

1. ()
2. () () [()]
3. () () () () ()

COMPUTATION OF STATE TRANSISTION MATRIX

Method 1: Computation of e^{Ac} using matrix exponential
In this method the e^{Ac} is computed using the matrix exponential of equation

$$
e^{A t}=\left[I+A t+\frac{1}{2!} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots \frac{1}{i!} A^{i} t^{i}\right]
$$

Where,
e^{AL} state transition matrix of order $\mathrm{n} x \mathrm{n}$
$\mathrm{A}=$ System matrix of order $\mathrm{n} \times \mathrm{n}$
$\mathrm{I}=$ Unit matrix of order n x n
Method 2: Computation of state transition matrix by Laplace transforms method
Consider the state equation without input vector $X .(t)=A X(t)$
On taking Laplace transform of above equation,

$$
X(s)=(s I-A) \sim^{l} X(0)
$$

On taking inverse Laplace transform

$$
X(t)=\mathrm{L}^{-1}\left[(\mathrm{sI}-\mathrm{A})^{-1}\right] \mathrm{X}(0)
$$

On comparing above equation with state equation

$$
\mathrm{X}(t)=e^{A l} x_{0}
$$

$$
\begin{aligned}
& \left.\left.\mathrm{e}^{\mathrm{A} t}=L \sim \wedge^{\wedge}(\mathrm{s} \mathrm{I}-\mathrm{A})\right)^{1}\right] \\
& L^{[} e^{A \mathrm{t}]}=L^{[} p(\mathrm{t})^{]}=p(s)
\end{aligned}
$$

Where () () it is called resolvant matrix

