

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

 STATE CHART DIAGRAM

A state diagram is used to represent the condition of the system or part of the

system at finite instances of time. It’s a behavioral diagram and it represents

the behavior using finite state transitions. State diagrams are also referred to as

State machines and State-chart Diagrams. These terms are often used

interchangeably. So simply, a state diagram is used to model the dynamic

behavior of a class in response to time and changing external stimuli. We can

say that each and every class has a state but we don’t model every class using

State diagrams. We prefer to model the states with three or more states.

Uses of state chart diagram –

• We use it to state the events responsible for change in state (we do not

show what processes cause those events).

• We use it to model the dynamic behavior of the system .

• To understand the reaction of objects/classes to internal or

external stimuli. Firstly let us understand what are Behavior

diagrams?

There are two types of diagrams in UML :

1. Structure Diagrams – Used to model the static structure of a system,

for example- class diagram, package diagram, object diagram, deployment

diagram etc.

2. Behavior diagram – Used to model the dynamic change in the

system over time. They are used to model and construct the functionality

of a system. So, a behavior diagram simply guides us through the

functionality of the system using Use case diagrams, Interaction

diagrams, Activity diagrams and State diagrams.

Basic components of a statechart diagram –

1. Initial state – We use a black filled circle represent the initial state of a

System or a class.

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Figure – initial state notation

2. Transition – We use a solid arrow to represent the transition or change of

control from one state to another. The arrow is labelled with the event which

causes the change in state.

Figure – transition

3. State – We use a rounded rectangle to represent a state. A state

represents the conditions or circumstances of an object of a class

at an instant of time.

Figure – state notation

4. Fork – We use a rounded solid rectangular bar to represent a Fork

notation with incoming arrow from the parent state and outgoing arrows

towards the newly created states. We use the fork notation to represent a

state splitting into two or more concurrent states.

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Figure – a diagram using the fork

notation

5. Join – We use a rounded solid rectangular bar to represent a Join

notation with incoming arrows from the joining states and outgoing

arrow towards the common goal

state. We use the join notation when two or more states concurrently converge

into one on the occurrence of an event or events.

Figure – a diagram using join notation

6. Self transition – We use a solid arrow pointing back to the state itself

to represent a self transition. There might be scenarios when the state of the

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

object does not change upon the occurrence of an event. We use self

transitions to represent such cases.

Figure – self transition notation

7. Composite state – We use a rounded rectangle to represent a composite

state also.We represent a state with internal activities using a composite

state.

Figure – a state with internal activities

8. Final state – We use a filled circle within a circle notation to represent

the final state in a state machine diagram.

Figure – final state notation

Steps to draw a state diagram –

1. Identify the initial state and the final terminating states.

2. Identify the possible states in which the object can exist (boundary

values corresponding to different attributes guide us in identifying

different states).

3. Label the events which trigger these transitions.

Example – state diagram for an online order –

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

 Figure – state diagram for an online order

The UMl diagrams we draw depend on the system we aim to represent. Here is

just an example of how an online ordering system might look like :

1. On the event of an order being received, we transit from our

initial state to Unprocessed order state.

2. The unprocessed order is then checked.

3. If the order is rejected, we transit to the Rejected Order state.

4. If the order is accepted and we have the items available we transit to

the fulfilled order state.

5. However if the items are not available we transit to the Pending Order state.

Functional Modelling

Functional Modelling gives the process perspective of the object-oriented

analysis model and an overview of what the system is supposed to do. It defines

the function of the internal processes in the system with the aid of Data Flow

Diagrams (DFDs). It depicts the functional derivation of the data values without

indicating how they are derived when they are computed, or why they need to be

computed.

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

DATA FLOW DIAGRAMS

Functional Modelling is represented through a hierarchy of DFDs. The DFD is

a graphical representation of a system that shows the inputs to the system, the

processing upon the inputs, the outputs of the system as well as the internal data

stores. DFDs illustrate the series of transformations or computations performed

on the objects or the system, and the external controls and objects that affect the

transformation.

Rumbaugh et al. have defined DFD as, “A data flow diagram is a graph which

shows the flow of data values from their sources in objects through processes that

transform them to their destinations on other objects.”

The four main parts of a DFD are −

• Processes,

• Data Flows,

• Actors, and

• Data Stores.

The other parts of a DFD are −

• Constraints, and

• Control Flows.

Features of a

DFD Processes

Processes are the computational activities that transform data values. A whole system
can be
visualized as a high-level process. A process may be further divided into smaller

components. The lowest-level process may be a simple function.

Representation in DFD − A process is represented as an ellipse with its name

written inside it and contains a fixed number of input and output data values.

Example − The following figure shows a process Compute_HCF_LCM that

accepts two integers as inputs and outputs their HCF (highest common factor) and

LCM (least common multiple).

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Data Flows

Data flow represents the flow of data between two processes. It could be

between an actor and a process, or between a data store and a process. A data

flow denotes the value of a data item at some point of the computation. This value

is not changed by the data flow.

Representation in DFD − A data flow is represented by a directed arc or an

arrow, labelled with the name of the data item that it carries.

In the above figure, Integer_a and Integer_b represent the input data flows to the

process, while

L.C.M. and H.C.F. are the output data flows.

A data flow may be forked in the following cases −

• The output value is sent to several places as shown in the following figure.

Here, the output arrows are unlabelled as they denote the same value.

• The data flow contains an aggregate value, and each of the components is

sent to different places as shown in the following figure. Here, each of the

forked components is labelled.

Actors

Actors are the active objects that interact with the system by either producing

data and inputting them to the system, or consuming data produced by the

system. In other words, actors serve as the sources and the sinks of data.

Representation in DFD − An actor is represented by a rectangle. Actors are

connected to the inputs and outputs and lie on the boundary of the DFD.

Example − The following figure shows the actors, namely, Customer and

Sales_Clerk in a counter sales system.

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Data Stores

Data stores are the passive objects that act as a repository of data. Unlike actors, they

cannot perform any operations. They are used to store data and retrieve the stored data.

They represent a data structure, a disk file, or a table in a database.

Representation in DFD − A data store is represented by two parallel lines containing

the name of the data store. Each data store is connected to at least one process. Input

arrows contain information to modify the contents of the data store, while output arrows

contain information retrieved from the data store. When a part of the information is to be

retrieved, the output arrow is labelled. An unlabelled arrow denotes full data retrieval. A

two-way arrow implies both retrieval and update.

Example − The following figure shows a data store, Sales_Record, that stores the details

of all sales. Input to the data store comprises of details of sales such as item, billing

amount, date, etc. To find the average sales, the process retrieves the sales records and

computes the average.

Constraints

Constraints specify the conditions or restrictions that need to be satisfied over time. They

allow adding new rules or modifying existing ones. Constraints can appear in all the three

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

models of object-oriented analysis.

• In Object Modelling, the constraints define the relationship between objects. They

may also define the relationship between the different values that an object may

take at different times.

• In Dynamic Modelling, the constraints define the relationship between the states

and events of different objects.

• In Functional Modelling, the constraints define the restrictions on the

transformations and computations.

Advantages and Disadvantages of DFD

Advantages Disadvantages

DFDs depict the boundaries of a system and

hence are helpful in portraying the relationship

between the external objects and the processes

within the system.

DFDs take a long time to create, which may not

be feasible for practical purposes.

They help the users to have a knowledge about

the system.

DFDs do not provide any information about the

time-dependent behavior, i.e., they do not

specify when the transformations are done.

The graphical representation serves as a

blueprint for the programmers to develop a

system.

They do not throw any light on the frequency of

computations or the reasons for computations.

DFDs provide detailed information about the

system processes.

The preparation of DFDs is a complex process

that needs considerable expertise. Also, it is

difficult for a non-technical person to

understand.

They are used as a part of the system

documentation.

The method of preparation is subjective and

leaves ample scope to be imprecise.

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

FUNCTIONAL MODELS

The Object Model, the Dynamic Model, and the Functional Model are complementary to

each other for a complete Object-Oriented Analysis.

• Object modelling develops the static structure of the software system in terms of

objects. Thus it shows the “doers” of a system.
• Dynamic Modelling develops the temporal behavior of the objects in response to

external events. It shows the sequences of operations performed on the objects.
• Functional model gives an overview of what the system should do.

Functional Model and Object Model

The four main parts of a Functional Model in terms of object model are −

• Process − Processes imply the methods of the objects that need to be implemented.
• Actors − Actors are the objects in the object model.
• Data Stores − These are either objects in the object model or attributes of objects.
• Data Flows − Data flows to or from actors represent operations on or by objects.

Data flows to or from data stores represent queries or updates.
Functional Model and Dynamic Model

The dynamic model states when the operations are performed, while the functional

model states how they are performed and which arguments are needed. As actors are

active objects, the dynamic model has to specify when it acts. The data stores are passive

objects and they only respond to updates and queries; therefore, the dynamic model

need not specify when they act.

Object Model and Dynamic Model

The dynamic model shows the status of the objects and the operations performed on the

occurrences of events and the subsequent changes in states. The state of the object as a

result of the changes is shown in the object model.

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

	STATE CHART DIAGRAM
	Uses of state chart diagram –
	Basic components of a statechart diagram –
	Steps to draw a state diagram –
	Functional Modelling
	DATA FLOW DIAGRAMS
	Features of a DFD Processes
	Data Flows
	Actors
	Data Stores
	Advantages and Disadvantages of DFD
	Functional Model and Object Model
	Functional Model and Dynamic Model
	Object Model and Dynamic Model

