
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

BINARY SEARCH

 INTRODUCTION TO SEARCHING

 Searching in data structure refers to the process of finding the required

information from a collection of items stored as elements in the computer

memory.

 These sets of items are in different forms, such as an array, linked list, graph, or

tree.

 Another way to define searching in the data structures is by locating the desired

element of specific characteristics in a collection of items.

 Searching Methods

 Searching in the data structure can be done by applying searching algorithms to

check for or extract an element from any form of stored data structure. These

algorithms are classified according to the type of search operation they perform,

such as:

 Sequential search - The list or array of elements is traversed sequentially while

checking every component of the set. For example – Linear Search.

 Interval Search - The interval search includes algorithms that are explicitly

designed for searching in sorted data structures. In terms of efficiency, these

algorithms are far better than linear search algorithms. Example- Logarithmic

Search, Binary search.

These methods are evaluated based on the time taken by an algorithm to search

an element matching the search item in the data collections and are given by,

 The best possible time

 The average time

 The worst-case time

The primary concerns are with worst-case times, which provide guaranteed

predictions of the algorithm’s performance and are also easier to calculate than average

times.

 LINEAR SEARCH

 Linear search is also called as sequential search algorithm.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 It is the simplest searching algorithm.

 In Linear search, we simply traverse the list completely and match each element

of the list with the item whose location is to be found.

 If the match is found, then the location of the item is returned; otherwise, the

algorithm returns NULL.

 It is widely used to search an element from the unordered list, i.e., the list in which

items are not sorted.

 The worst-case time complexity of linear search is O (n).

 Steps used in the implementation of Linear Search

 First, we have to traverse the array elements using for loop.

 In each iteration of for loop, compare the search element with the current array

element, and

 If the element matches, then return the index of the corresponding array

element.

 If the element does not match, then move to the next element.

 If there is no match or the search element is not present in the given array, return

-1.

 Algorithm

Linear_Search(a, n, val) // 'a' is the given array, 'n' is the size of given array, 'val'

is the value to search

Step 1: set pos = -1

Step 2: set i = 1

Step 3: repeat step 4 while i <= n

Step 4: if a[i] == val

set pos = i

print pos

go to step 6

[end of if]

set ii = i + 1

[end of loop]

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Step 5: if pos = -1

print "value is not present in the array "

[end of if]

Step 6: exit

 Working of Linear search

Consider an array of elements 70, 40, 30, 11, 57, 41, 25, 14, 52

Let the elements of array are

Let the element to be searched is K = 41

Now, start from the first element and compare K with each element of the array.

The value of K, i.e., 41, is not matched with the first element of the array. So, move to

the next element. And follow the same process until the respective element is found.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Now, the element to be searched is found. So algorithm will return the index of

the element matched.

 Linear Search complexity

Time Complexity

Best O(1)

Worst O(n)

Average O(n)

Space Complexity O(1)

 Applications of Linear Search Algorithm

 Linear search can be applied to both single-dimensional and multi-dimensional

arrays.

 Linear search is easy to implement and effective when the array contains only a

few elements.

 Linear Search is also efficient when the search is performed to fetch a single

search in an unordered-List.

 Advantages and Disadvantages

Sl. No. Advantages Disadvantages

1.
Will perform fast searches of

small to medium lists

Time consuming for the enormous

arrays.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

2. The list does not need to sorted Slow searching of big lists

3.

Not affected by insertions and

deletions

A key element doesn't matches any

element then Linear search algorithm is

a worst case

Example Program 5.5: Program for Implementation of Linear Search

#include <stdio.h>

int linearSearch(int a[], int n, int val) {

// Going through array sequencially

for (int i = 0; i < n; i++)

{

if (a[i] == val)

return i+1;

}

return -1;

}

int main() {

int a[] = {59, 40, 33, 11, 57, 41, 27, 18, 53}; // given

array int val = 41; // value to be searched

int n = sizeof(a) / sizeof(a[0]); // size of array

int res = linearSearch(a, n, val); // Store

result printf("The elements of the array are -

");

for (int i = 0; i < n; i++)

printf("%d ", a[i]);

printf("\nElement to be searched is - %d", val);

if (res == -1)

printf("\nElement is not present in the array");

else

printf("\nElement is present at %d position of array", res);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

return 0;

}

Output

The elements of the array are - 59, 40, 33, 11, 57, 41, 27, 18, 53

Element to be searched is – 41

Element is present at 6 position of array

 BINARY SEARCH

 Binary search is the search technique that works efficiently on sorted lists.

 Hence, to search an element into some list using the binary search technique, we

must ensure that the list is sorted.

 Binary search follows the divide and conquer approach in which the list is divided

into two halves, and the item is compared with the middle element of the list.

 If the match is found then, the location of the middle element is returned.

 Otherwise, we search into either of the halves depending upon the result produced

through the match.

 Algorithm

Binary_Search(a, lower_bound, upper_bound, val) // 'a' is the given array,

'lower_bound' is the index of the first array element, 'upper_bound' is the index of the last

array element, 'val' is the value to search

Step 1: set beg = lower_bound, end = upper_bound, pos = - 1

Step 2: repeat steps 3 and 4 while beg <=end

Step 3: set mid = (beg + end)/2

Step 4: if a[mid] = val

set pos = mid

print pos

go to step 6

else if a[mid] > val

set end = mid - 1

else

set beg = mid + 1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

[end of if]

[end of loop]

Step 5: if pos = -1

print "value is not present in the array"

[end of if]

Step 6: exit

 Working of Binary search

 To understand the working of the Binary search algorithm, let's take a sorted array.

It will be easy to understand the working of Binary search with an example.

 There are two methods to implement the binary search algorithm -

 Iterative method

 Recursive method

The recursive method of binary search follows the divide and conquer approach

Consider an array of elements 10, 12, 24, 29, 39, 40, 51, 56, 69

Let the elements of array are

Let the element to search is, K = 56

Use the below formula to calculate the mid of the array

mid = (beg + end)/2

In the given array beg = 0, end = 8. So mid = (0+8)/2 = 4

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

N

ow,

the

eleme

nt to

search

is

found.

So

algorit

hm

will

return

the

index

of the

eleme

nt

match

ed.

 Binar

y

S

ea

rc

h

co

m

plexity:

Time Complexity

Best O(1)

Worst O(logn)

Average O(logn)

Space Complexity O(1)

 Advantages and Disadvantages

Sl. No. Advantages Disadvantages

1. It is a much faster algorithm It can be used only when data is sorted

2.
It works on the divide and

conquers principle

It is more complicated

3.
It is efficient If random access is not supported then

efficiency might be lost

4.
It is a simple algorithm to

understand

It can be implemented only for two-way

transversal data structures

Example Program 5.6: Program for implementation of

Binary Search #include <stdio.h>

int binarySearch(int a[], int beg, int end, int val)

{

int mid;

if(end >= beg)

{ mid = (beg + end)/2;

/* if the item to be searched is present

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

a

t

m

i

d

d

l

e

*

/

i

f

(

a

[

m

i

d

]

=

=

v

a

l

)

{

return mid+1;

}

/* if the item to be searched is smaller than middle, then it can

only be in

left subarray*/

else if(a[mid] < val)

{

return binarySearch(a, mid+1, end, val);

}

/* if the item to be searched is greater than middle, then it can

only be in

right

s

u

b

a

r

r

a

y

*

/

e

l

s

e

{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

r

e

t

u

r

n

b

i

n

a

r

y

S

e

a

r

c

h

(

a

,

b

e

g

,

m

i

d

-

1

,

v

a

l

)

;

}

}

return -1;

}

int main() {

int a[] = {21, 14, 35, 30, 40, 51, 55, 57, 70}; //

given array int val = 40; // value to be searched

int n = sizeof(a) / sizeof(a[0]); // size of array

int res = binarySearch(a, 0, n-1, val); //

Store result printf("The elements of the

array are - ");

for (int i = 0; i < n; i++)

printf("%d ", a[i]);

printf("\nElement to be searched is - %d", val);

if (res == -1)

printf("\nElement is not present in the array");

else

printf("\nElement is present at %d position of array", res);

return 0

}

Output

The elements of the array are - 21, 14, 35, 30, 40, 51, 55, 57, 70

Element to be searched is – 40

Element is present at 5 position of array

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Linear Search vs Binary Search

Sl.

No.
Linear Search Binary Search

1.
In linear search input data need not

to be in sorted.

In binary search input data need to be in

sorted order.

2. It is also called sequential search. It is also called half-interval search.

3.
It is preferable for the small-sized

data sets.

It is preferable for the large-size data sets.

4.
The time complexity of linear

search O(n).

The time complexity of binary search

O(log n).

5.
Multidimensional array can be

used.

Only single dimensional array is used.

6.
Linear search performs equality

comparisons

Binary search performs ordering

comparisons

7. It is less complex. It is more complex.

8. It is very slow process. It is very fast process

	INTRODUCTION TO SEARCHING
	Searching Methods

	LINEAR SEARCH
	Steps used in the implementation of Linear Search
	Algorithm
	Working of Linear search
	Linear Search complexity
	Advantages and Disadvantages
	Output

	BINARY SEARCH
	Algorithm
	Working of Binary search
	Binary Search complexity:
	Linear Search vs Binary Search

